切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (01) : 48 -51. doi: 10.3877/cma.j.issn.2095-3216.2022.01.009

综述

激活素A在肾脏疾病中的作用研究进展
王东1, 张亚伟1, 丁小桐1, 倪洁1,()   
  1. 1. 150081 哈尔滨医科大学附属第一医院肾内科
  • 收稿日期:2021-10-29 出版日期:2022-02-28
  • 通信作者: 倪洁
  • 基金资助:
    黑龙江省自然科学基金(LH2019H025)

Research progress on the role of activin A in renal diseases

Dong Wang1, Yawei Zhang1, Xiaotong Ding1, Jie Ni1,()   

  1. 1. Department of Nephrology, First Hospital Affiliated to Harbin Medical University, Harbin 150081, Heilongjiang Province, China
  • Received:2021-10-29 Published:2022-02-28
  • Corresponding author: Jie Ni
引用本文:

王东, 张亚伟, 丁小桐, 倪洁. 激活素A在肾脏疾病中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2022, 11(01): 48-51.

Dong Wang, Yawei Zhang, Xiaotong Ding, Jie Ni. Research progress on the role of activin A in renal diseases[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(01): 48-51.

激活素A(ActA)是转化生长因子-β家族成员之一,是体内广泛表达的参与细胞分化、增殖和炎症的因子。近年来研究发现,ActA与多种肾脏疾病的发生、发展密切相关。ActA拮抗剂可能具有防治肾脏疾病及其并发症、延缓肾脏疾病进展的作用。因此,ActA有可能成为肾脏疾病的新的治疗靶点。本文就ActA在各种类型肾脏疾病以及肾损伤中作用的最新研究做一总结,为进一步探索ActA提供参考。

Activin A (ActA) is a member of the transforming growth factor-β family, and is a widely-expressed factor in the body that participates in the cell differentiation, proliferation, and inflammation. In recent years, ActA has been found to be closely related to the occurrence and development of various kidney diseases. ActA antagonists may have the effects of preventing and treating kidney disease and its complications, and delaying the progression of kidney disease. Therefore, ActA may become a new therapeutic target for kidney disease. This article summarized the latest research on the role of ActA in various types of kidney disease and kidney injury, so as to provide a reference for further exploration of ActA.

图1 激活素A信号通路[3]注:ActA:激活素A;ActR-Ⅱ:激活素Ⅱ型受体;ActR-Ⅰ:激活素Ⅰ型受体;ROD:renal osteodystrophy,肾性骨营养不良;VC:vascular calcification,血管钙化
[1]
Walton KL, Makanji Y, Harrison CA. New insights into the mechanisms of activin action and inhibition [J]. Mol Cell Endocrinol, 2012, 359(1-2): 2-12.
[2]
Bloise E, Ciarmela P, Dela Cruz C, et al. Activin A in mammalian physiology [J]. Physiol Rev, 2019, 99(1): 739-780.
[3]
Maeshima A, Miya M, Mishima K, et al. Activin A: autocrine regulator of kidney development and repair [J]. Endocr J, 2008, 55(1): 1-9.
[4]
Maeshima A, Vaughn DA, Choi Y, et al. Activin A is an endogenous inhibitor of ureteric bud outgrowth from the Wolffian duct [J]. Dev Biol, 2006, 295(2): 473-485.
[5]
任玮,余宏川,王萍,等. miR-17-5p诱导小鼠肾足细胞系凋亡[J]. 基础医学与临床2019, 39(7): 973-977.
[6]
张延蕊,武艺飞,王慧,等. 微小RNA-17-5p在小儿肾病综合征发病中的作用及其机制研究[J]. 中国当代儿科杂志2020, 22(9): 958-963.
[7]
Takahashi S, Nakasatomi M, Takei Y, et al. Identification of urinary activin A as a novel biomarker reflecting the severity of acute kidney injury [J]. Sci Rep, 2018, 8(1): 5176.
[8]
Tsai YL, Chou RH, Lu YW, et al. Serum activin A levels and renal outcomes after coronary angiography [J]. Sci Rep, 2020, 10(1): 3365.
[9]
Jelkmann W. Activin receptor ligand traps in chronic kidney disease [J]. Curr Opin Nephrol Hypertens, 2018, 27(5): 351-357.
[10]
Spottiswoode N, Armitage AE, Williams AR, et al. Role of activins in hepcidin regulation during malaria [J]. Infect Immun, 2017, 85(12): e00191-17.
[11]
Carrancio S, Markovics J, Wong P, et al. An activin receptor IIA ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin [J]. Br J Haematol, 2014, 165(6): 870-882.
[12]
Mehta N, Krepinsky JC. The emerging role of activins in renal disease [J]. Curr Opin Nephrol Hypertens, 2020, 29(1): 136-144.
[13]
Hortells L, Sosa C, Guillén N, et al. Identifying early pathogenic events during vascular calcification in uremic rats [J]. Kidney Int, 2017, 92(6): 1384-1394.
[14]
Sugatani T. Systemic activation of activin A signaling causes chronic kidney disease-mineral bone disorder [J]. Int J Mol Sci, 2018, 19(9): 2490.
[15]
Sugatani T, Agapova OA, Fang Y, et al. Ligand trap of the activin receptor type IIA inhibits osteoclast stimulation of bone remodeling in diabetic mice with chronic kidney disease [J]. Kidney Int, 2017, 91(1): 86-95.
[16]
Lima F, Mawad H, El-Husseini AA, et al. Serum bone markers in ROD patients across the spectrum of decreases in GFR: activin A increases before all other markers [J]. Clin Nephrol, 2019, 91(4): 222-230.
[17]
Nordholm A, Mace ML, Gravesen E, et al. Klotho and activin A in kidney injury: plasma Klotho is maintained in unilateral obstruction despite no upregulation of Klotho biosynthesis in the contralateral kidney [J]. Am J Physiol Renal Physiol, 2018, 314(5): F753-F762.
[18]
Nordholm A, Egstrand S, Gravesen E, et al. Circadian rhythm of activin A and related parameters of mineral metabolism in normal and uremic rats [J]. Pflugers Arch, 2019, 471(8): 1079-1094.
[19]
Wang Y, He G, Tang H, et al. Aspirin inhibits inflammation and scar formation in the injury tendon healing through regulating JNK/STAT-3 signalling pathway [J]. Cell Prolif, 2019, 52(4): e12650.
[20]
Zhang D, Gava AL, Van Krieken R, et al. The caveolin-1 regulated protein follistatin protects against diabetic kidney disease [J]. Kidney Int, 2019, 96(5): 1134-1149.
[21]
Bian X, Griffin TP, Zhu X, et al. Senescence marker activin A is increased in human diabetic kidney disease: association with kidney function and potential implications for therapy [J]. BMJ Open Diabetes Res Care, 2019, 7(1): e000720.
[22]
Kadiombo AT, Maeshima A, Kayakabe K, et al. Involvement of infiltrating macrophage-derived activin A in the progression of renal damage in MRL-lpr mice [J]. Am J Physiol Renal Physiol, 2017, 312(2): F297-F304.
[23]
Takei Y, Takahashi S, Nakasatomi M, et al. Urinary activin A is a novel biomarker reflecting renal inflammation and tubular damage in ANCA-associated vasculitis [J]. PLoS One, 2019, 14(10): e0223703.
[24]
Iriuchishima H, Maeshima A, Takahashi S, et al. Activin A: a novel urinary biomarker of renal impairment in multiple myeloma [J]. Biosci Rep, 2019, 39(5): BSR20190206.
[25]
Koken E, Oyar EO, Uyanikgil Y, et al. Exogenous follistatin administration ameliorates cisplatin-induced acute kidney injury through anti-inflammation and anti-apoptosis effects [J]. Bratisl Lek Listy, 2020, 121(2): 143-150.
[26]
Yuan C, Ni L, Wu X. Activin A activation drives renal fibrosis through the STAT3 signaling pathway [J]. Int J Biochem Cell Biol, 2021, 134: 105950.
[27]
Cappellini MD, Porter J, Origa R, et al. Sotatercept, a novel transforming growth factor β ligand trap, improves anemia in β-thalassemia: a phase II, open-label, dose-finding study [J]. Haematologica, 2019, 104(3): 477-484.
[28]
Komrokji RS. Activin receptor II ligand traps: new treatment paradigm for low-risk MDS [J]. Curr Hematol Malig Rep, 2019, 14(4): 346-351.
[29]
Abdulkadyrov KM, Salogub GN, Khuazheva NK, et al. Sotatercept in patients with osteolytic lesions of multiple myeloma [J]. Br J Haematol, 2014, 165(6): 814-823.
[30]
Agapova OA, Fang Y, Sugatani T, et al. Ligand trap for the activin type IIA receptor protects against vascular disease and renal fibrosis in mice with chronic kidney disease [J]. Kidney Int, 2016, 89(6): 1231-1243.
[31]
Williams MJ, Sugatani T, Agapova OA, et al. The activin receptor is stimulated in the skeleton, vasculature, heart, and kidney during chronic kidney disease [J]. Kidney Int, 2018, 93(1): 147-158.
[1] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[2] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[3] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[4] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国肝移植受者肾损伤管理临床实践指南(2023版)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 276-288.
[5] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[6] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[7] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[8] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[9] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[10] 王小龙, 吴杰, 段姝伟, 王超卉, 潘娜, 白圆圆, 李航天, 蔡广研. 不同等级体力活动对慢性肾脏病患者预后的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 121-128.
[11] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[12] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[13] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[14] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[15] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
阅读次数
全文


摘要