[1] |
严人,江慧勇,李兰娟. 人体微生态与健康和疾病[J]. 微生物学报,2017, 57(6): 793-805.
|
[2] |
郭晓奎,陈倩. 人体微生态学研究进展[J]. 中华消化杂志,2018, 38(11): 747-754.
|
[3] |
刘平,李宗军,许爱清. 胃肠道微生态系统及其功能研究[J]. 中国微生态学杂志,2010, 22(3): 277-278, 281.
|
[4] |
Kho ZY, Lal SK. The human gut microbiome - a potential controller of wellness and disease [J]. Front Microbiol, 2018, 9: 1835.
|
[5] |
Barko PC, McMichael MA, Swanson K, et al. The gastrointestinal microbiome: a review [J]. J Vet Intern Med, 2018, 32(1): 9-25.
|
[6] |
Wrzosek L, Miquel S, Noordine ML, et al. Bacteroides thetaiotaomicron and faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent [J]. BMC Biol, 2013, 11: 61.
|
[7] |
甄建华,于河,谷晓红. 肠道微生态医学研究进展概述[J]. 中华中医药杂志,2017, 32(7): 3069-3075.
|
[8] |
Yamashiro Y. Gut microbiota in health and disease [J]. Ann Nutr Metab, 2017, 71(3-4): 242-246.
|
[9] |
方戴琼,顾思岚,石鼎,等. 人体肠道微生态与疾病发生发展的关系及机制研究进展 [J]. 中国微生态学杂志,2016, 28(5): 614-617.
|
[10] |
Jiang S, Xie S, Lv D, et al. Alteration of the gut microbiota in Chinese population with chronic kidney disease [J]. Sci Rep, 2017, 7(1): 2870.
|
[11] |
Wong J, Piceno YM, DeSantis TZ, et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD [J]. Am J Nephrol, 2014, 39(3): 230-237.
|
[12] |
Armani RG, Ramezani A, Yasir A, et al. Gut microbiome in chronic kidney disease [J]. Curr Hypertens Rep, 2017, 19(4): 29.
|
[13] |
Garcia A, Macedo MH, Azevedo MJ, et al. Effect of uremic state in intestine through a co-culture in vitro intestinal epithelial model [J]. Int J Pharm, 2020, 584: 119450.
|
[14] |
Koppe L, Fouque D, Soulage CO. The role of gut microbiota and diet on uremic retention solutes production in the context of chronic kidney disease [J]. Toxins (Basel), 2018, 10(4): 155.
|
[15] |
王会玲. 肠源性尿毒症毒素与慢性肾衰竭进展及干预策略[J]. 中国中西医结合肾病杂志,2020, 21(1): 79-81.
|
[16] |
Lim YJ, Sidor NA, Tonial NC, et al. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets [J]. Toxins (Basel), 2021, 13(2): 142.
|
[17] |
Glorieux G, Vanholder R, Van Biesen W, et al. Free p-cresyl sulfate shows the highest association with cardiovascular outcome in chronic kidney disease [J]. Nephrol Dial Transplant, 2021, 36(6): 998-1005.
|
[18] |
Espi M, Koppe L, Fouque D, et al. Chronic kidney disease-associated immune dysfunctions: impact of protein-bound uremic retention solutes on immune cells [J]. Toxins (Basel), 2020, 12(5): 300.
|
[19] |
Lv J, Chen J, Wang M, et al. Klotho alleviates indoxyl sulfate-induced heart failure and kidney damage by promoting M2 macrophage polarization [J]. Aging (Albany NY), 2020, 12(10): 9139-9150.
|
[20] |
Shimizu H, Bolati D, Higashiyama Y, et al. Indoxyl sulfate upregulates renal expression of MCP-1 via production of ROS and activation of NF-κB, p53, ERK, and JNK in proximal tubular cells [J]. Life Sci, 2012, 90(13-14): 525-530.
|
[21] |
Kwiatkowska I, Hermanowicz JM, Mysliwiec M, et al. Oxidative storm induced by tryptophan metabolites: missing link between atherosclerosis and chronic kidney disease [J]. Oxid Med Cell Longev, 2020, 2020: 6656033.
|
[22] |
Kharait S, Haddad DJ, Springer ML. Nitric oxide counters the inhibitory effects of uremic toxin indoxyl sulfate on endothelial cells by governing ERK MAP kinase and myosin light chain activation [J]. Biochem Biophys Res Commun, 2011, 409(4): 758-763.
|
[23] |
Yang K, Du C, Wang X, et al. Indoxyl sulfate induces platelet hyperactivity and contributes to chronic kidney disease-associated thrombosis in mice [J]. Blood, 2017, 129(19): 2667-2679.
|
[24] |
Shivanna S, Kolandaivelu K, Shashar M, et al. The aryl hydrocarbon receptor is a critical regulator of tissue factor stability and an antithrombotic target in uremia [J]. J Am Soc Nephrol, 2016, 27(1): 189-201.
|
[25] |
Sirich TL, Funk BA, Plummer NS, et al. Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion [J]. J Am Soc Nephrol, 2014, 25(3): 615-622.
|
[26] |
Tomlinson JAP, Wheeler DC. The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease [J]. Kidney Int, 2017, 92(4): 809-815.
|
[27] |
Zhang L, Xie F, Tang H, et al. Gut microbial metabolite TMAO increases peritoneal inflammation and peritonitis risk in peritoneal dialysis patients [J]. Transl Res, 2022, 240: 50-63.
|
[28] |
Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB [J]. J Am Heart Assoc, 2016, 5(2): e002767.
|
[29] |
Koay YC, Chen YC, Wali JA, et al. Plasma levels of TMAO can be increased with ′healthy′ and ′unhealthy′ diets and do not correlate with the extent of atherosclerosis but with plaque instability [J]. Cardiovasc Res, 2020, 117(2): 435-449.
|
[30] |
Jin B, Ji F, Zuo A, et al. Destructive role of TMAO in T-tubule and excitation-contraction coupling in the adult cardiomyocytes [J]. Int Heart J, 2020, 61(2): 355-363.
|
[31] |
Poesen R, Claes K, Evenepoel P, et al. Microbiota-derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD [J]. J Am Soc Nephrol, 2016, 27(11): 3479-3487.
|
[32] |
Lefkowitz RJ, Rockman HA, Koch WJ. Catecholamines, cardiac beta-adrenergic receptors, and heart failure [J]. Circulation, 2000, 101(14): 1634-1637.
|
[33] |
Dou L, Sallée M, Cerini C, et al. The cardiovascular effect of the uremic solute indole-3 acetic acid [J]. J Am Soc Nephrol, 2015, 26(4): 876-887.
|
[34] |
Addi T, Poitevin S, McKay N, et al. Mechanisms of tissue factor induction by the uremic toxin indole-3 acetic acid through aryl hydrocarbon receptor/nuclear factor-kappa B signaling pathway in human endothelial cells [J]. Arch Toxicol, 2019, 93(1): 121-136.
|
[35] |
Yoshifuji A, Wakino S, Irie J, et al. Oral adsorbent AST-120 ameliorates gut environment and protects against the progression of renal impairment in CKD rats [J]. Clin Exp Nephrol, 2018, 22(5): 1069-1078.
|
[36] |
Asai M, Kumakura S, Kikuchi M. Review of the efficacy of AST-120 (KREMEZIN ) on renal function in chronic kidney disease patients [J]. Ren Fail, 2019, 41(1): 47-56.
|
[37] |
Sato E, Hosomi K, Sekimoto A, et al. Effects of the oral adsorbent AST-120 on fecal p-cresol and indole levels and on the gut microbiota composition [J]. Biochem Biophys Res Commun, 2020, 525(3): 773-779.
|
[38] |
Larigot L, Juricek L, Dairou J, et al. AhR signaling pathways and regulatory functions [J]. Biochim Open, 2018, 7: 1-9.
|
[39] |
Watanabe I, Tatebe J, Namba S, et al. Activation of aryl hydrocarbon receptor mediates indoxyl sulfate-induced monocyte chemoattractant protein-1 expression in human umbilical vein endothelial cells [J]. Circ J, 2013, 77(1): 224-230.
|
[40] |
Makki K, Deehan EC, Walter J, et al. The impact of dietary fiber on gut microbiota in host health and disease [J]. Cell Host Microbe, 2018, 23(6): 705-715.
|
[41] |
Simeoni M, Citraro ML, Cerantonio A, et al. An open-label, randomized, placebo-controlled study on the effectiveness of a novel probiotics administration protocol (ProbiotiCKD) in patients with mild renal insufficiency (stage 3a of CKD) [J]. Eur J Nutr, 2019, 58(5): 2145-2156.
|
[42] |
Pavan M. Influence of prebiotic and probiotic supplementation on the progression of chronic kidney disease [J]. Minerva Urol Nefrol, 2016, 68(2): 222-226.
|
[43] |
Faria Barros AD, Borges NA, Nakao LS, et al. Effects of probiotic supplementation on inflammatory biomarkers and uremic toxins in non-dialysis chronic kidney patients: a double-blind, randomized, placebo-controlled trial [J]. J Funct Foods, 2018, 46: 378-383.
|
[44] |
Zhou Y, Xu H, Huang H, et al. Are there potential applications of fecal microbiota transplantation beyond intestinal disorders [J]. Biomed Res Int, 2019, 2019: 3469754.
|
[45] |
Yacoub R, Wyatt CM. Manipulating the gut microbiome to decrease uremic toxins [J]. Kidney Int, 2017, 91(3): 521-523.
|
[46] |
李鹏,钟晓菁,张丽红,等. 肾康栓对慢性肾脏病患者肠源性尿毒症毒素硫酸对甲酚和硫酸吲哚酚的影响[J]. 中国中西医结合肾病杂志,2020, 21(11): 959-961.
|
[47] |
Lobel L, Cao YG, Fenn K, et al. Diet posttranslationally modifies the mouse gut microbial proteome to modulate renal function [J]. Science, 2020, 369(6510): 1518-1524.
|
[48] |
Ravid JD, Kamel MH, Chitalia VC. Uraemic solutes as therapeutic targets in CKD-associated cardiovascular disease [J]. Nat Rev Nephrol, 2021, 17(6): 402-416.
|