切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (01) : 39 -43. doi: 10.3877/cma.j.issn.2095-3216.2022.01.007

综述

肠道微生态与慢性肾脏病的关系及干预治疗研究进展
宋润霞1, 苏晓乐1, 王利华1,()   
  1. 1. 030001 太原,山西医科大学第二医院肾内科、山西省肾脏病研究所
  • 收稿日期:2021-06-03 出版日期:2022-02-28
  • 通信作者: 王利华

Research progress on the relationship between intestinal microecology and chronic kidney disease and the intervention therapy

Runxia Song1, Xiaole Su1, Lihua Wang1,()   

  1. 1. Department of Nephrology, Second Hospital Affiliated to Shanxi Medical University, Shanxi Provincial Institute of Nephrology, Taiyuan 030001, Shanxi Province, China
  • Received:2021-06-03 Published:2022-02-28
  • Corresponding author: Lihua Wang
引用本文:

宋润霞, 苏晓乐, 王利华. 肠道微生态与慢性肾脏病的关系及干预治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2022, 11(01): 39-43.

Runxia Song, Xiaole Su, Lihua Wang. Research progress on the relationship between intestinal microecology and chronic kidney disease and the intervention therapy[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(01): 39-43.

肠道微生态是人体微生态重要组成部分,与多种疾病密切相关。肠道微生态失调及肠道微生物代谢食物蛋白质所产生的肠源性毒素,在慢性肾脏病(CKD)的进展过程中发挥重要作用。本文阐述了硫酸吲哚酚、硫酸对甲酚、苯乙酰谷氨酰胺、氧化三甲胺、吲哚-3-乙酸的代谢过程及其与CKD本身和并发症的关系。改善肠道微生态、减少肠源性毒素产生,有可能延缓CKD进展,为CKD治疗提供新的方向。

Intestinal microecology is an important part of human microecology, and is closely related to many diseases. Intestinal dysbiosis and gut-derived toxins produced from gut microbes-metabolized dietary proteins play an important role in the progression of chronic kidney disease (CKD). This article described the metabolic processes of indoxyl sulfate, p-cresol sulfate, phenylacetylglutamine, trimethylamine oxide, and indole-3-acetic acid as well as their relationship with both CKD and its complications. Improving the gut microecology and reducing the production of gut-derived toxins may delay the progression of CKD, providing a new direction for the treatment of CKD.

表1 肠源性毒素促进CKD进展机制
表2 基于肠道微生态干预CKD的进展
[1]
严人,江慧勇,李兰娟. 人体微生态与健康和疾病[J]. 微生物学报2017, 57(6): 793-805.
[2]
郭晓奎,陈倩. 人体微生态学研究进展[J]. 中华消化杂志2018, 38(11): 747-754.
[3]
刘平,李宗军,许爱清. 胃肠道微生态系统及其功能研究[J]. 中国微生态学杂志2010, 22(3): 277-278, 281.
[4]
Kho ZY, Lal SK. The human gut microbiome - a potential controller of wellness and disease [J]. Front Microbiol, 2018, 9: 1835.
[5]
Barko PC, McMichael MA, Swanson K, et al. The gastrointestinal microbiome: a review [J]. J Vet Intern Med, 2018, 32(1): 9-25.
[6]
Wrzosek L, Miquel S, Noordine ML, et al. Bacteroides thetaiotaomicron and faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent [J]. BMC Biol, 2013, 11: 61.
[7]
甄建华,于河,谷晓红. 肠道微生态医学研究进展概述[J]. 中华中医药杂志2017, 32(7): 3069-3075.
[8]
Yamashiro Y. Gut microbiota in health and disease [J]. Ann Nutr Metab, 2017, 71(3-4): 242-246.
[9]
方戴琼,顾思岚,石鼎,等. 人体肠道微生态与疾病发生发展的关系及机制研究进展 [J]. 中国微生态学杂志2016, 28(5): 614-617.
[10]
Jiang S, Xie S, Lv D, et al. Alteration of the gut microbiota in Chinese population with chronic kidney disease [J]. Sci Rep, 2017, 7(1): 2870.
[11]
Wong J, Piceno YM, DeSantis TZ, et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD [J]. Am J Nephrol, 2014, 39(3): 230-237.
[12]
Armani RG, Ramezani A, Yasir A, et al. Gut microbiome in chronic kidney disease [J]. Curr Hypertens Rep, 2017, 19(4): 29.
[13]
Garcia A, Macedo MH, Azevedo MJ, et al. Effect of uremic state in intestine through a co-culture in vitro intestinal epithelial model [J]. Int J Pharm, 2020, 584: 119450.
[14]
Koppe L, Fouque D, Soulage CO. The role of gut microbiota and diet on uremic retention solutes production in the context of chronic kidney disease [J]. Toxins (Basel), 2018, 10(4): 155.
[15]
王会玲. 肠源性尿毒症毒素与慢性肾衰竭进展及干预策略[J]. 中国中西医结合肾病杂志2020, 21(1): 79-81.
[16]
Lim YJ, Sidor NA, Tonial NC, et al. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets [J]. Toxins (Basel), 2021, 13(2): 142.
[17]
Glorieux G, Vanholder R, Van Biesen W, et al. Free p-cresyl sulfate shows the highest association with cardiovascular outcome in chronic kidney disease [J]. Nephrol Dial Transplant, 2021, 36(6): 998-1005.
[18]
Espi M, Koppe L, Fouque D, et al. Chronic kidney disease-associated immune dysfunctions: impact of protein-bound uremic retention solutes on immune cells [J]. Toxins (Basel), 2020, 12(5): 300.
[19]
Lv J, Chen J, Wang M, et al. Klotho alleviates indoxyl sulfate-induced heart failure and kidney damage by promoting M2 macrophage polarization [J]. Aging (Albany NY), 2020, 12(10): 9139-9150.
[20]
Shimizu H, Bolati D, Higashiyama Y, et al. Indoxyl sulfate upregulates renal expression of MCP-1 via production of ROS and activation of NF-κB, p53, ERK, and JNK in proximal tubular cells [J]. Life Sci, 2012, 90(13-14): 525-530.
[21]
Kwiatkowska I, Hermanowicz JM, Mysliwiec M, et al. Oxidative storm induced by tryptophan metabolites: missing link between atherosclerosis and chronic kidney disease [J]. Oxid Med Cell Longev, 2020, 2020: 6656033.
[22]
Kharait S, Haddad DJ, Springer ML. Nitric oxide counters the inhibitory effects of uremic toxin indoxyl sulfate on endothelial cells by governing ERK MAP kinase and myosin light chain activation [J]. Biochem Biophys Res Commun, 2011, 409(4): 758-763.
[23]
Yang K, Du C, Wang X, et al. Indoxyl sulfate induces platelet hyperactivity and contributes to chronic kidney disease-associated thrombosis in mice [J]. Blood, 2017, 129(19): 2667-2679.
[24]
Shivanna S, Kolandaivelu K, Shashar M, et al. The aryl hydrocarbon receptor is a critical regulator of tissue factor stability and an antithrombotic target in uremia [J]. J Am Soc Nephrol, 2016, 27(1): 189-201.
[25]
Sirich TL, Funk BA, Plummer NS, et al. Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion [J]. J Am Soc Nephrol, 2014, 25(3): 615-622.
[26]
Tomlinson JAP, Wheeler DC. The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease [J]. Kidney Int, 2017, 92(4): 809-815.
[27]
Zhang L, Xie F, Tang H, et al. Gut microbial metabolite TMAO increases peritoneal inflammation and peritonitis risk in peritoneal dialysis patients [J]. Transl Res, 2022, 240: 50-63.
[28]
Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB [J]. J Am Heart Assoc, 2016, 5(2): e002767.
[29]
Koay YC, Chen YC, Wali JA, et al. Plasma levels of TMAO can be increased with ′healthy′ and ′unhealthy′ diets and do not correlate with the extent of atherosclerosis but with plaque instability [J]. Cardiovasc Res, 2020, 117(2): 435-449.
[30]
Jin B, Ji F, Zuo A, et al. Destructive role of TMAO in T-tubule and excitation-contraction coupling in the adult cardiomyocytes [J]. Int Heart J, 2020, 61(2): 355-363.
[31]
Poesen R, Claes K, Evenepoel P, et al. Microbiota-derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD [J]. J Am Soc Nephrol, 2016, 27(11): 3479-3487.
[32]
Lefkowitz RJ, Rockman HA, Koch WJ. Catecholamines, cardiac beta-adrenergic receptors, and heart failure [J]. Circulation, 2000, 101(14): 1634-1637.
[33]
Dou L, Sallée M, Cerini C, et al. The cardiovascular effect of the uremic solute indole-3 acetic acid [J]. J Am Soc Nephrol, 2015, 26(4): 876-887.
[34]
Addi T, Poitevin S, McKay N, et al. Mechanisms of tissue factor induction by the uremic toxin indole-3 acetic acid through aryl hydrocarbon receptor/nuclear factor-kappa B signaling pathway in human endothelial cells [J]. Arch Toxicol, 2019, 93(1): 121-136.
[35]
Yoshifuji A, Wakino S, Irie J, et al. Oral adsorbent AST-120 ameliorates gut environment and protects against the progression of renal impairment in CKD rats [J]. Clin Exp Nephrol, 2018, 22(5): 1069-1078.
[36]
Asai M, Kumakura S, Kikuchi M. Review of the efficacy of AST-120 (KREMEZIN ) on renal function in chronic kidney disease patients [J]. Ren Fail, 2019, 41(1): 47-56.
[37]
Sato E, Hosomi K, Sekimoto A, et al. Effects of the oral adsorbent AST-120 on fecal p-cresol and indole levels and on the gut microbiota composition [J]. Biochem Biophys Res Commun, 2020, 525(3): 773-779.
[38]
Larigot L, Juricek L, Dairou J, et al. AhR signaling pathways and regulatory functions [J]. Biochim Open, 2018, 7: 1-9.
[39]
Watanabe I, Tatebe J, Namba S, et al. Activation of aryl hydrocarbon receptor mediates indoxyl sulfate-induced monocyte chemoattractant protein-1 expression in human umbilical vein endothelial cells [J]. Circ J, 2013, 77(1): 224-230.
[40]
Makki K, Deehan EC, Walter J, et al. The impact of dietary fiber on gut microbiota in host health and disease [J]. Cell Host Microbe, 2018, 23(6): 705-715.
[41]
Simeoni M, Citraro ML, Cerantonio A, et al. An open-label, randomized, placebo-controlled study on the effectiveness of a novel probiotics administration protocol (ProbiotiCKD) in patients with mild renal insufficiency (stage 3a of CKD) [J]. Eur J Nutr, 2019, 58(5): 2145-2156.
[42]
Pavan M. Influence of prebiotic and probiotic supplementation on the progression of chronic kidney disease [J]. Minerva Urol Nefrol, 2016, 68(2): 222-226.
[43]
Faria Barros AD, Borges NA, Nakao LS, et al. Effects of probiotic supplementation on inflammatory biomarkers and uremic toxins in non-dialysis chronic kidney patients: a double-blind, randomized, placebo-controlled trial [J]. J Funct Foods, 2018, 46: 378-383.
[44]
Zhou Y, Xu H, Huang H, et al. Are there potential applications of fecal microbiota transplantation beyond intestinal disorders [J]. Biomed Res Int, 2019, 2019: 3469754.
[45]
Yacoub R, Wyatt CM. Manipulating the gut microbiome to decrease uremic toxins [J]. Kidney Int, 2017, 91(3): 521-523.
[46]
李鹏,钟晓菁,张丽红,等. 肾康栓对慢性肾脏病患者肠源性尿毒症毒素硫酸对甲酚和硫酸吲哚酚的影响[J]. 中国中西医结合肾病杂志2020, 21(11): 959-961.
[47]
Lobel L, Cao YG, Fenn K, et al. Diet posttranslationally modifies the mouse gut microbial proteome to modulate renal function [J]. Science, 2020, 369(6510): 1518-1524.
[48]
Ravid JD, Kamel MH, Chitalia VC. Uraemic solutes as therapeutic targets in CKD-associated cardiovascular disease [J]. Nat Rev Nephrol, 2021, 17(6): 402-416.
[1] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[2] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国肝移植受者肾损伤管理临床实践指南(2023版)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 276-288.
[3] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[4] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[5] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[6] 王小龙, 吴杰, 段姝伟, 王超卉, 潘娜, 白圆圆, 李航天, 蔡广研. 不同等级体力活动对慢性肾脏病患者预后的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 121-128.
[7] 张轶男, 朱国贞. 急性肾损伤向慢性肾脏病转变研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 106-112.
[8] 吴燕升, 张先闻, 王琳. 慢性肾脏病患者肠道微生态与免疫的关系研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 101-105.
[9] 肖伍豪, 刘抗寒. 晚期慢性肾脏病患者骨质疏松症的治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 92-96.
[10] 洪权. 肾脏疾病中的代谢重编程:新机制与新的治疗机会[J/OL]. 中华肾病研究电子杂志, 2024, 13(01): 60-60.
[11] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
[12] 韦美菊, 潘玲. 肠道菌群-胆汁酸代谢轴在慢性肾脏病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 219-222.
[13] 袁蔡骏, 闻萍, 徐玲玲. 连续血糖监测在慢性肾脏病合并糖尿病患者中的应用研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(01): 79-82.
[14] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J/OL]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[15] 罗婷, 邱令智, 易东, 鄢华. 线粒体功能障碍与心血管疾病、缺血性脑卒中及慢性肾脏病关系的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 60-63.
阅读次数
全文


摘要