| [1] |
Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013 [J]. JAMA, 2017, 317(24): 2515-2523.
|
| [2] |
Hayashino Y, Okamura S, Tsujii S, et al. Association of serum uric acid levels with the risk of development or progression of albuminuria among Japanese patients with type 2 diabetes: a prospective cohort study [J]. Acta Diabetol, 2016, 53(4): 599-607.
|
| [3] |
Li C, Hsieh MC, Chang SJ. Metabolic syndrome, diabetes, and hyperuricemia [J]. Curr Opin Rheumatol, 2013, 25(2): 210-216.
|
| [4] |
Bhatnagar A, Srivastava SK. Aldose reductase: congenial and injurious profiles of an enigmatic enzyme [J]. Biochem Med Metab Biol, 1992, 48(2): 91-121.
|
| [5] |
Zhang Y, Hong Q, Huang Z, et al. ALDR enhanced endothelial injury in hyperuricemia screened using SILAC [J]. Cell Physiol Biochem, 2014, 33(2): 479-490.
|
| [6] |
Kanbay M, Segal M, Afsar B, et al. The role of uric acid in the pathogenesis of human cardiovascular disease [J]. Heart, 2013, 99(11): 759-766.
|
| [7] |
Wu AH, Gladden JD, Ahmed M, et al. Relation of serum uric acid to cardiovascular disease [J]. Int J Cardiol, 2016, 213: 4-7.
|
| [8] |
Kregel KC,Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations [J]. Am J Physiol Regul Integr Comp Physiol, 2007, 292(1): R18-R36.
|
| [9] |
Brownlee M. Biochemistry and molecular cell biology of diabetic complications [J]. Nature, 2001, 414(6865): 813-820.
|
| [10] |
Alom-Ruiz SP, Anilkumar N, Shah AM. Reactive oxygen species and endothelial activation [J]. Antioxid Redox Signal, 2008, 10(6): 1089-1100.
|
| [11] |
Dworakowski R, Alom-Ruiz SP, Shah AM. NADPH oxidase-derived reactive oxygen species in the regulation of endothelial phenotype [J]. Pharmacol Rep, 2008, 60(1): 21-28.
|
| [12] |
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology [J]. Physiol Rev, 2007, 87(1): 245-313.
|