切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2018, Vol. 07 ›› Issue (01) : 34 -38. doi: 10.3877/cma.j.issn.2095-3216.2018.01.008

所属专题: 文献

论著

高糖与高尿酸通过醛糖还原酶通路协同作用加重内皮细胞损伤
刘冰1, 洪权2, 冯哲2,()   
  1. 1. 100050 首都医科大学附属北京友谊医院内分泌科
    2. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
  • 收稿日期:2017-01-05 出版日期:2018-02-28
  • 通信作者: 冯哲
  • 基金资助:
    国家自然科学基金(81470949)

Synergistic injury of the endothelial cells by high glucose and high uric acid through the aldose reductase pathway

Bing Liu1, Quan Hong2, Zhe Feng2,()   

  1. 1. Endocrinology Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
    2. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853; China
  • Received:2017-01-05 Published:2018-02-28
  • Corresponding author: Zhe Feng
  • About author:
    Corresponding author: Feng Zhe, Email:
引用本文:

刘冰, 洪权, 冯哲. 高糖与高尿酸通过醛糖还原酶通路协同作用加重内皮细胞损伤[J]. 中华肾病研究电子杂志, 2018, 07(01): 34-38.

Bing Liu, Quan Hong, Zhe Feng. Synergistic injury of the endothelial cells by high glucose and high uric acid through the aldose reductase pathway[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2018, 07(01): 34-38.

目的

寻找高血糖与高尿酸血症协同加重内皮细胞损伤的共同作用靶点和分子机制,为糖尿病合并高尿酸血症患者心血管疾病的保护提供干预靶点。

方法

用人脐静脉内皮细胞系(HUVEC-C)给予高糖(30 mmol/L,HG)、高尿酸(600 μmol/L,UA)和高糖(HG)+高尿酸(UA)联合培养48 h。利用10 μmol/L阿司他丁阻断醛糖还原酶(AR)的活性。实时定量PCR检测内皮型一氧化氮合成酶(eNOS)和AR mRNA的表达;Western blot检测还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶2 (NOX2)、NOX4、eNOS和AR蛋白的表达;共聚焦显微镜检测细胞内ROS的活性;一氧化氮(NO)试剂盒检测NO活性。

结果

与单独HG组和UA组相比,HG+UA共培养组明显降低eNOS mRNA水平和蛋白表达,减少NO产生,增加内皮细胞胞内ROS活性;HG+UA共培养明显上调AR mRNA水平和蛋白表达。应用AR抑制剂能够明显增加HG+UA组内皮细胞eNOS mRNA水平和蛋白表达,增加内皮细胞NO的分泌水平。AR抑制剂能够明显下调HG+UA组内皮细胞NOX4的蛋白表达,对NOX2无影响;降低细胞内ROS的含量。

结论

高血糖和高尿酸协同作用通过激活醛糖还原酶途径下调内皮细胞eNOS的表达,增加ROS活性,减少NO的产生,加重内皮细胞功能障碍;而抑制醛糖还原酶,能够通过抑制NOX4表达,阻断这种协同损伤作用。

Objective

To find the common target and molecular mechanism of the synergistic injury of the endothelial cell caused by high glucose and high uric acid for prevention from cardiovascular diseases in diabetes patients complicated with hyperuricemia.

Methods

The human umbilical vein endothelial cell line (HUVEC-C) was treated with high glucose (30 mmol/L, HG), high uric acid (600 μmol/L, UA) or HG plus UA for 48 hours. The activity of aldose reductase (AR) was blocked with alrestatin (10 μmol/L). Real-time quantitative PCR was used for detecting the mRNA expression of endothelial nitric oxide synthase (eNOS) and AR. Western blot was used to detect the expression of reduced nicotinamide adenine dinucleotide phosphate oxidase (NOX)2, NOX4, eNOS and AR proteins. The intracellular activity of ROS was assayed with confocal microscopy. Nitric oxide (NO) concentration was measured with chemiluminescence assay kit.

Results

Compared with the HG or UA, HG+ UA could significantly reduce not only the mRNA and protein levels of eNOS but also NO production, and increase the intracellular ROS generation in the endothelial cells. HG+ UA also remarkably increased AR mRNA level and protein expression. Furthermore, in the endothelial cells of the HG+ UA group, alrestatin significantly increased the mRNA and protein expression of eNOS as well as the secretion level of NO, while alrestatin obviously down-regulated both the protein expression of NOX4 and the intracellular content of ROS, but had no effects on NOX2.

Conclusions

In endothelial cells, via the aldose reductase pathway, the hyperglycemia and hyperuricemia synergistically decreased the expression of eNOS and the production of NO, but increased the ROS generation, aggravating the endothelial dysfunction, which could be blocked by inhibition of aldose reductase through down-regulation of NOX4.

图1 高血糖和高尿酸刺激内皮细胞eNOS,NO以及ROS表达情况
图2 高血糖和高尿酸刺激内皮细胞醛糖还原酶表达情况
图3 醛糖还原酶抑制剂-阿司他丁上调细胞内eNOS表达和NO的产生
图4 醛糖还原酶抑制剂下调NOX4表达,降低活性氧产生
[1]
Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013 [J]. JAMA, 2017, 317(24): 2515-2523.
[2]
Hayashino Y, Okamura S, Tsujii S, et al. Association of serum uric acid levels with the risk of development or progression of albuminuria among Japanese patients with type 2 diabetes: a prospective cohort study [J]. Acta Diabetol, 2016, 53(4): 599-607.
[3]
Li C, Hsieh MC, Chang SJ. Metabolic syndrome, diabetes, and hyperuricemia [J]. Curr Opin Rheumatol, 2013, 25(2): 210-216.
[4]
Bhatnagar A, Srivastava SK. Aldose reductase: congenial and injurious profiles of an enigmatic enzyme [J]. Biochem Med Metab Biol, 1992, 48(2): 91-121.
[5]
Zhang Y, Hong Q, Huang Z, et al. ALDR enhanced endothelial injury in hyperuricemia screened using SILAC [J]. Cell Physiol Biochem, 2014, 33(2): 479-490.
[6]
Kanbay M, Segal M, Afsar B, et al. The role of uric acid in the pathogenesis of human cardiovascular disease [J]. Heart, 2013, 99(11): 759-766.
[7]
Wu AH, Gladden JD, Ahmed M, et al. Relation of serum uric acid to cardiovascular disease [J]. Int J Cardiol, 2016, 213: 4-7.
[8]
Kregel KC,Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations [J]. Am J Physiol Regul Integr Comp Physiol, 2007, 292(1): R18-R36.
[9]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications [J]. Nature, 2001, 414(6865): 813-820.
[10]
Alom-Ruiz SP, Anilkumar N, Shah AM. Reactive oxygen species and endothelial activation [J]. Antioxid Redox Signal, 2008, 10(6): 1089-1100.
[11]
Dworakowski R, Alom-Ruiz SP, Shah AM. NADPH oxidase-derived reactive oxygen species in the regulation of endothelial phenotype [J]. Pharmacol Rep, 2008, 60(1): 21-28.
[12]
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology [J]. Physiol Rev, 2007, 87(1): 245-313.
[1] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[2] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[3] 罗丽芳, 刘哲夫, 董兵, 刘晓玲, 丘雨旻, 周喆, 何江, 夏文豪. 达格列净改善高糖诱导的人脐静脉内皮细胞功能的机制研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 10-18.
[4] 王丽媛, 张瑞芳, 王向托, 王雅霄. 老年高尿酸血症患者血清白细胞介素-23、尿酸、单核细胞趋化蛋白-1与肾功能损伤的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 145-149.
[5] 洪权. 从血管内皮探讨糖尿病肾病的进展机制[J]. 中华肾病研究电子杂志, 2023, 12(01): 60-60.
[6] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[7] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[8] 王洁琼, 王慧霞, 赵慧颖, 安友仲. 血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用[J]. 中华重症医学电子杂志, 2023, 09(01): 78-83.
[9] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[10] 王丽芳, 宁武, 丁艳, 张彦霞, 马豆豆, 卢哲敏, 韩芃, 李超然, 王宽婷. 北京市石景山区中学生的血尿酸与血清25(OH)D3水平的相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(08): 865-869.
[11] 陶璐, 初楠, 韩洁, 白春英, 逄雯丽, 余海源. 血清PECAM-1、Sirt1水平与2型糖尿病患者颈动脉粥样硬化的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 291-296.
[12] 李昌艳, 顾芳, 刘娟, 唐明敏. 非布司他治疗慢性肾脏病伴发高尿酸血症的疗效及预后影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(03): 279-284.
[13] 岑妍慧, 高月, 林江, 刘鹏, 贾微, 杨瑞, 黄威, 刘鑫, 黄泽萍, 宁志莹. 水解南珠液通过Wnt/β-catenin通路调节细胞自噬对人微血管内皮细胞氧化应激损伤的影响[J]. 中华临床医师杂志(电子版), 2023, 17(01): 72-79.
[14] 李少莹, 文莹, 贾翠萍, 张媛, 邓伟豪. 抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 65-70.
[15] 何明, 程俊铭, 张源, 孔祥鑫, 宋可, 任亦星. GLP-1RA类药物在减重治疗中的临床应用效果[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 225-230.
阅读次数
全文


摘要