切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2018, Vol. 07 ›› Issue (04) : 182 -185. doi: 10.3877/cma.j.issn.2095-3216.2018.04.010

所属专题: 文献

综述

糖尿病肾病的蛋白质组学研究进展
刘洋1, 程庆砾1,(), 杨光1   
  1. 1. 100853 北京,解放军总医院南楼临床部肾脏病科
  • 收稿日期:2018-03-05 出版日期:2018-08-28
  • 通信作者: 程庆砾
  • 基金资助:
    国家自然科学基金青年项目(81600655); 军队保健专项科研基金(16BJZ12)

Progress of research on proteomics of diabetic nephropathy

Yang Liu1, Qingli Cheng1,(), Guang Yang1   

  1. 1. Department of Geriatric Nephrology, Chinese PLA General Hospital, Beijing 100853, China
  • Received:2018-03-05 Published:2018-08-28
  • Corresponding author: Qingli Cheng
  • About author:
    Corresponding author: Cheng Qingli, Email:
引用本文:

刘洋, 程庆砾, 杨光. 糖尿病肾病的蛋白质组学研究进展[J]. 中华肾病研究电子杂志, 2018, 07(04): 182-185.

Yang Liu, Qingli Cheng, Guang Yang. Progress of research on proteomics of diabetic nephropathy[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2018, 07(04): 182-185.

糖尿病肾病(DN)是糖尿病最常见的微血管并发症,也是导致终末期肾病(ESRD)的重要原因。微量白蛋白尿作为预测DN进展的指标并不可靠,寻找DN早期生物学标志物以及对DN早期肾脏病变的机制研究为目前研究的重点。蛋白质组学技术近年来飞速发展,对DN患者的尿液、血液以及肾组织的蛋白质组学研究可能会为我们早期诊治DN提供新的希望。本文对蛋白质组学主要技术及DN蛋白质组学研究的近期研究进展进行综述。

Diabetic nephropathy (DN) is the most common microvascular complication of diabetes, and also an important cause for end-stage renal disease (ESRD). Microalbuminuria is not a reliable indicator for predicting the progression of DN. Looking for early biomarkers and investigating the mechanisms of renal early lesions in DN are currently the paramount missions. Proteomics technologies have developed rapidly in recent years, and proteomics research on urine, blood and kidney tissue of DN patients may provide new hope for early diagnosis and treatment of DN. This review summarized the major technologies of proteomics and its recent progress in DN.

[1]
Currie G, Delles C. Urinary proteomics for diagnosis and monitoring of diabetic nephropathy [J]. Curr Diab Rep, 2016, 16(11): 104.
[2]
Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China [J]. N Engl J Med, 2010, 362(12): 1090-1101.
[3]
Lin CH, Chang YC, Chuang LM. Early detection of diabetic kidney disease: present limitations and future perspectives [J]. World J Diabetes, 2016, 7(14): 290-301.
[4]
Perkins BA, Ficociello LH, Silva KH, et al. Regression of microalbuminuria in type 1 diabetes [J]. N Engl J Med, 2003, 348(23): 2285-2293.
[5]
Araki S, Haneda M, Sugimoto T, et al. Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes [J]. Diabetes, 2005, 54(10): 2983-2987.
[6]
Son MK, Yoo HY, Kwak BO, et al. Regression and progression of microalbuminuria in adolescents with childhood onset diabetes mellitus [J]. Ann Pediatr Endocrinol Metab, 2015, 20(1): 13-20.
[7]
Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium [J]. Electrophoresis, 1995, 16(7): 1090-1094.
[8]
Breker M, Schuldiner M. The emergence of proteome-wide technologies: systematic analysis of proteins comes of age [J]. Nat Rev Mol Cell Biol, 2014, 15(7): 453-464.
[9]
Bantscheff M, Lemeer S, Savitski MM, et al. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present [J]. Anal Bioanal Chem, 2012, 404(4): 939-965.
[10]
Meier M, Kaiser T, Herrmann A, et al. Identification of urinary protein pattern in type 1 diabetic adolescents with early diabetic nephropathy by a novel combined proteome analysis [J]. J Diabetes Complications, 2005, 19(4): 223-232.
[11]
Otu HH, Can H, Spentzos D, et al. Prediction of diabetic nephropathy using urine proteomic profiling 10 years prior to development of nephropathy [J]. Diabetes Care, 2007, 30(3): 638-643.
[12]
Jin J, Ku YH, Kim Y, et al. Differential proteome profiling using iTRAQ in microalbuminuric and normoalbuminuric type 2 diabetic patients [J]. Exp Diabetes Res, 2012, 2012: 168602.
[13]
Thrailkill KM, Nimmo T, Bunn RC, et al. Microalbuminuria in type 1 diabetes is associated with enhanced excretion of the endocytic multiligand receptors megalin and cubilin [J]. Diabetes Care, 2009, 32(7): 1266-1268.
[14]
Hryciw DH, Lee EM, Pollock CA, et al. Molecular changes in proximal tubule function in diabetes mellitus [J]. Clin Exp Pharmacol Physiol, 2004, 31(5-6): 372-379.
[15]
Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors [J]. Nat Rev Mol Cell Biol, 2002, 3(4): 256-266.
[16]
Jiang H, Guan G, Zhang R, et al. Identification of urinary soluble E-cadherin as a novel biomarker for diabetic nephropathy [J]. Diabetes Metab Res Rev, 2009, 25(3): 232-241.
[17]
Merchant ML, Perkins BA, Boratyn GM, et al. Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria [J]. J Am Soc Nephrol, 2009, 20(9): 2065-2074.
[18]
Good DM, Zurbig P, Argiles A, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease [J]. Mol Cell Proteomics, 2010, 9(11): 2424-2437.
[19]
Schanstra JP, Zurbig P, Alkhalaf A, et al. Diagnosis and prediction of CKD progression by assessment of urinary peptides [J]. J Am Soc Nephrol, 2015, 26(8): 1999-2010.
[20]
Argiles A, Siwy J, Duranton F, et al. CKD273, a new proteomics classifier assessing CKD and its prognosis [J]. PLoS One, 2013, 8(5): e62837.
[21]
Andersen S, Mischak H, Zurbig P, et al. Urinary proteome analysis enables assessment of renoprotective treatment in type 2 diabetic patients with microalbuminuria [J]. BMC Nephrol, 2010, 11: 29.
[22]
Lindhardt M, Persson F, Currie G, et al. Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy in TYpe 2 diabetic patients with normoalbuminuria (PRIORITY): essential study design and rationale of a randomised clinical multicentre trial [J]. BMJ Open, 2016, 6(3): e010310.
[23]
Betz BB, Jenks SJ, Cronshaw AD, et al. Urinary peptidomics in a rodent model of diabetic nephropathy highlights epidermal growth factor as a biomarker for renal deterioration in patients with type 2 diabetes [J]. Kidney Int, 2016, 89(5): 1125-1135.
[24]
Siwy J, Zoja C, Klein J, et al. Evaluation of the Zucker diabetic fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles [J]. PLoS One, 2012, 7(12): e51334.
[25]
Zubiri I, Posada-Ayala M, Benito-Martin A, et al. Kidney tissue proteomics reveals regucalcin downregulation in response to diabetic nephropathy with reflection in urinary exosomes [J]. Transl Res, 2015, 166(5): 474-484.
[26]
Zubiri I, Posada-Ayala M, Sanz-Maroto A, et al. Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis [J]. J Proteomics, 2014, 96: 92-102.
[27]
Raimondo F, Corbetta S, Morosi L, et al. Urinary exosomes and diabetic nephropathy: a proteomic approach [J]. Mol Biosyst, 2013, 9(6): 1139-1146.
[28]
Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects [J]. Mol Cell Proteomics, 2002, 1(11): 845-867.
[29]
Kim HJ, Cho EH, Yoo JH, et al. Proteome analysis of serum from type 2 diabetics with nephropathy [J]. J Proteome Res, 2007, 6(2): 735-743.
[30]
Cho EH, Kim MR, Kim HJ, et al. The discovery of biomarkers for type 2 diabetic nephropathy by serum proteome analysis [J]. Proteomics Clin Appl, 2007, 1(4): 352-361.
[31]
Yang Y, Zhang S, Lu B, et al. Predicting diabetic nephropathy by serum proteomic profiling in patients with type 2 diabetes [J]. Wien Klin Wochenschr, 2015, 127(17-18): 669-674.
[32]
Nakatani S, Kakehashi A, Ishimura E, et al. Targeted proteomics of isolated glomeruli from the kidneys of diabetic rats: sorbin and SH3 domain containing 2 is a novel protein associated with diabetic nephropathy [J]. Exp Diabetes Res, 2011, 2011: 979354.
[33]
Zhang D, Yang H, Kong X, et al. Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes [J]. Am J Physiol Endocrinol Metab, 2011, 300(2): E287-E295.
[34]
Fugmann T, Borgia B, Revesz C, et al. Proteomic identification of vanin-1 as a marker of kidney damage in a rat model of type 1 diabetic nephropathy [J]. Kidney Int, 2011, 80(3): 272-281.
[35]
Tsai PY, Chen SM, Chen HY, et al. Proteome analysis of altered proteins in streptozotocin-induced diabetic rat kidney using the fluorogenic derivatization-liquid chromatography-tandem mass spectrometry method [J]. Biomed Chromatogr, 2013, 27(3): 382-389.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[3] 王洁, 丁泊文, 尹健. 糖尿病性乳腺病52例临床分析[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 285-289.
[4] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[5] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[6] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[7] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[8] 鲍亚慧, 曹志斌, 王健楠, 别瑶, 孙晓东, 惠宗光. 应用羧甲基纤维素钠银敷料联合封闭负压吸引治疗糖尿病足溃疡的疗效[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 326-330.
[9] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[10] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[11] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[12] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[13] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[14] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[15] 谢国晓, 赵凌霞, 薛雪花. 慢性病管理模式在糖尿病社区管理中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 587-590.
阅读次数
全文


摘要