切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2018, Vol. 07 ›› Issue (04) : 182 -185. doi: 10.3877/cma.j.issn.2095-3216.2018.04.010

所属专题: 文献

综述

糖尿病肾病的蛋白质组学研究进展
刘洋1, 程庆砾1,(), 杨光1   
  1. 1. 100853 北京,解放军总医院南楼临床部肾脏病科
  • 收稿日期:2018-03-05 出版日期:2018-08-28
  • 通信作者: 程庆砾
  • 基金资助:
    国家自然科学基金青年项目(81600655); 军队保健专项科研基金(16BJZ12)

Progress of research on proteomics of diabetic nephropathy

Yang Liu1, Qingli Cheng1,(), Guang Yang1   

  1. 1. Department of Geriatric Nephrology, Chinese PLA General Hospital, Beijing 100853, China
  • Received:2018-03-05 Published:2018-08-28
  • Corresponding author: Qingli Cheng
  • About author:
    Corresponding author: Cheng Qingli, Email:
引用本文:

刘洋, 程庆砾, 杨光. 糖尿病肾病的蛋白质组学研究进展[J/OL]. 中华肾病研究电子杂志, 2018, 07(04): 182-185.

Yang Liu, Qingli Cheng, Guang Yang. Progress of research on proteomics of diabetic nephropathy[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2018, 07(04): 182-185.

糖尿病肾病(DN)是糖尿病最常见的微血管并发症,也是导致终末期肾病(ESRD)的重要原因。微量白蛋白尿作为预测DN进展的指标并不可靠,寻找DN早期生物学标志物以及对DN早期肾脏病变的机制研究为目前研究的重点。蛋白质组学技术近年来飞速发展,对DN患者的尿液、血液以及肾组织的蛋白质组学研究可能会为我们早期诊治DN提供新的希望。本文对蛋白质组学主要技术及DN蛋白质组学研究的近期研究进展进行综述。

Diabetic nephropathy (DN) is the most common microvascular complication of diabetes, and also an important cause for end-stage renal disease (ESRD). Microalbuminuria is not a reliable indicator for predicting the progression of DN. Looking for early biomarkers and investigating the mechanisms of renal early lesions in DN are currently the paramount missions. Proteomics technologies have developed rapidly in recent years, and proteomics research on urine, blood and kidney tissue of DN patients may provide new hope for early diagnosis and treatment of DN. This review summarized the major technologies of proteomics and its recent progress in DN.

[1]
Currie G, Delles C. Urinary proteomics for diagnosis and monitoring of diabetic nephropathy [J]. Curr Diab Rep, 2016, 16(11): 104.
[2]
Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China [J]. N Engl J Med, 2010, 362(12): 1090-1101.
[3]
Lin CH, Chang YC, Chuang LM. Early detection of diabetic kidney disease: present limitations and future perspectives [J]. World J Diabetes, 2016, 7(14): 290-301.
[4]
Perkins BA, Ficociello LH, Silva KH, et al. Regression of microalbuminuria in type 1 diabetes [J]. N Engl J Med, 2003, 348(23): 2285-2293.
[5]
Araki S, Haneda M, Sugimoto T, et al. Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes [J]. Diabetes, 2005, 54(10): 2983-2987.
[6]
Son MK, Yoo HY, Kwak BO, et al. Regression and progression of microalbuminuria in adolescents with childhood onset diabetes mellitus [J]. Ann Pediatr Endocrinol Metab, 2015, 20(1): 13-20.
[7]
Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium [J]. Electrophoresis, 1995, 16(7): 1090-1094.
[8]
Breker M, Schuldiner M. The emergence of proteome-wide technologies: systematic analysis of proteins comes of age [J]. Nat Rev Mol Cell Biol, 2014, 15(7): 453-464.
[9]
Bantscheff M, Lemeer S, Savitski MM, et al. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present [J]. Anal Bioanal Chem, 2012, 404(4): 939-965.
[10]
Meier M, Kaiser T, Herrmann A, et al. Identification of urinary protein pattern in type 1 diabetic adolescents with early diabetic nephropathy by a novel combined proteome analysis [J]. J Diabetes Complications, 2005, 19(4): 223-232.
[11]
Otu HH, Can H, Spentzos D, et al. Prediction of diabetic nephropathy using urine proteomic profiling 10 years prior to development of nephropathy [J]. Diabetes Care, 2007, 30(3): 638-643.
[12]
Jin J, Ku YH, Kim Y, et al. Differential proteome profiling using iTRAQ in microalbuminuric and normoalbuminuric type 2 diabetic patients [J]. Exp Diabetes Res, 2012, 2012: 168602.
[13]
Thrailkill KM, Nimmo T, Bunn RC, et al. Microalbuminuria in type 1 diabetes is associated with enhanced excretion of the endocytic multiligand receptors megalin and cubilin [J]. Diabetes Care, 2009, 32(7): 1266-1268.
[14]
Hryciw DH, Lee EM, Pollock CA, et al. Molecular changes in proximal tubule function in diabetes mellitus [J]. Clin Exp Pharmacol Physiol, 2004, 31(5-6): 372-379.
[15]
Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors [J]. Nat Rev Mol Cell Biol, 2002, 3(4): 256-266.
[16]
Jiang H, Guan G, Zhang R, et al. Identification of urinary soluble E-cadherin as a novel biomarker for diabetic nephropathy [J]. Diabetes Metab Res Rev, 2009, 25(3): 232-241.
[17]
Merchant ML, Perkins BA, Boratyn GM, et al. Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria [J]. J Am Soc Nephrol, 2009, 20(9): 2065-2074.
[18]
Good DM, Zurbig P, Argiles A, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease [J]. Mol Cell Proteomics, 2010, 9(11): 2424-2437.
[19]
Schanstra JP, Zurbig P, Alkhalaf A, et al. Diagnosis and prediction of CKD progression by assessment of urinary peptides [J]. J Am Soc Nephrol, 2015, 26(8): 1999-2010.
[20]
Argiles A, Siwy J, Duranton F, et al. CKD273, a new proteomics classifier assessing CKD and its prognosis [J]. PLoS One, 2013, 8(5): e62837.
[21]
Andersen S, Mischak H, Zurbig P, et al. Urinary proteome analysis enables assessment of renoprotective treatment in type 2 diabetic patients with microalbuminuria [J]. BMC Nephrol, 2010, 11: 29.
[22]
Lindhardt M, Persson F, Currie G, et al. Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy in TYpe 2 diabetic patients with normoalbuminuria (PRIORITY): essential study design and rationale of a randomised clinical multicentre trial [J]. BMJ Open, 2016, 6(3): e010310.
[23]
Betz BB, Jenks SJ, Cronshaw AD, et al. Urinary peptidomics in a rodent model of diabetic nephropathy highlights epidermal growth factor as a biomarker for renal deterioration in patients with type 2 diabetes [J]. Kidney Int, 2016, 89(5): 1125-1135.
[24]
Siwy J, Zoja C, Klein J, et al. Evaluation of the Zucker diabetic fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles [J]. PLoS One, 2012, 7(12): e51334.
[25]
Zubiri I, Posada-Ayala M, Benito-Martin A, et al. Kidney tissue proteomics reveals regucalcin downregulation in response to diabetic nephropathy with reflection in urinary exosomes [J]. Transl Res, 2015, 166(5): 474-484.
[26]
Zubiri I, Posada-Ayala M, Sanz-Maroto A, et al. Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis [J]. J Proteomics, 2014, 96: 92-102.
[27]
Raimondo F, Corbetta S, Morosi L, et al. Urinary exosomes and diabetic nephropathy: a proteomic approach [J]. Mol Biosyst, 2013, 9(6): 1139-1146.
[28]
Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects [J]. Mol Cell Proteomics, 2002, 1(11): 845-867.
[29]
Kim HJ, Cho EH, Yoo JH, et al. Proteome analysis of serum from type 2 diabetics with nephropathy [J]. J Proteome Res, 2007, 6(2): 735-743.
[30]
Cho EH, Kim MR, Kim HJ, et al. The discovery of biomarkers for type 2 diabetic nephropathy by serum proteome analysis [J]. Proteomics Clin Appl, 2007, 1(4): 352-361.
[31]
Yang Y, Zhang S, Lu B, et al. Predicting diabetic nephropathy by serum proteomic profiling in patients with type 2 diabetes [J]. Wien Klin Wochenschr, 2015, 127(17-18): 669-674.
[32]
Nakatani S, Kakehashi A, Ishimura E, et al. Targeted proteomics of isolated glomeruli from the kidneys of diabetic rats: sorbin and SH3 domain containing 2 is a novel protein associated with diabetic nephropathy [J]. Exp Diabetes Res, 2011, 2011: 979354.
[33]
Zhang D, Yang H, Kong X, et al. Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes [J]. Am J Physiol Endocrinol Metab, 2011, 300(2): E287-E295.
[34]
Fugmann T, Borgia B, Revesz C, et al. Proteomic identification of vanin-1 as a marker of kidney damage in a rat model of type 1 diabetic nephropathy [J]. Kidney Int, 2011, 80(3): 272-281.
[35]
Tsai PY, Chen SM, Chen HY, et al. Proteome analysis of altered proteins in streptozotocin-induced diabetic rat kidney using the fluorogenic derivatization-liquid chromatography-tandem mass spectrometry method [J]. Biomed Chromatogr, 2013, 27(3): 382-389.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 王杰, 袁泉, 王玥琦, 乔佳君, 谭春丽, 夏仲元, 刘守尧. 溃疡油在糖尿病足溃疡治疗中的应用效果及安全性观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 480-484.
[3] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[4] 周涵, 武胡雯, 张培深, 邓晗彬, 范闻轩, 李嘉诚, 程少文. 蛋白质组学在慢性难愈合创面研究中的应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 536-540.
[5] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[6] 别瑶, 曹志斌, 辛静, 王健楠, 惠宗光. 应用基质血管成分细胞治疗糖尿病足溃疡的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 453-456.
[7] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[8] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[9] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[10] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[11] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[12] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[13] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[14] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[15] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
阅读次数
全文


摘要