[1] |
Currie G, Delles C. Urinary proteomics for diagnosis and monitoring of diabetic nephropathy [J]. Curr Diab Rep, 2016, 16(11): 104.
|
[2] |
Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China [J]. N Engl J Med, 2010, 362(12): 1090-1101.
|
[3] |
Lin CH, Chang YC, Chuang LM. Early detection of diabetic kidney disease: present limitations and future perspectives [J]. World J Diabetes, 2016, 7(14): 290-301.
|
[4] |
Perkins BA, Ficociello LH, Silva KH, et al. Regression of microalbuminuria in type 1 diabetes [J]. N Engl J Med, 2003, 348(23): 2285-2293.
|
[5] |
Araki S, Haneda M, Sugimoto T, et al. Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes [J]. Diabetes, 2005, 54(10): 2983-2987.
|
[6] |
Son MK, Yoo HY, Kwak BO, et al. Regression and progression of microalbuminuria in adolescents with childhood onset diabetes mellitus [J]. Ann Pediatr Endocrinol Metab, 2015, 20(1): 13-20.
|
[7] |
Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium [J]. Electrophoresis, 1995, 16(7): 1090-1094.
|
[8] |
Breker M, Schuldiner M. The emergence of proteome-wide technologies: systematic analysis of proteins comes of age [J]. Nat Rev Mol Cell Biol, 2014, 15(7): 453-464.
|
[9] |
Bantscheff M, Lemeer S, Savitski MM, et al. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present [J]. Anal Bioanal Chem, 2012, 404(4): 939-965.
|
[10] |
Meier M, Kaiser T, Herrmann A, et al. Identification of urinary protein pattern in type 1 diabetic adolescents with early diabetic nephropathy by a novel combined proteome analysis [J]. J Diabetes Complications, 2005, 19(4): 223-232.
|
[11] |
Otu HH, Can H, Spentzos D, et al. Prediction of diabetic nephropathy using urine proteomic profiling 10 years prior to development of nephropathy [J]. Diabetes Care, 2007, 30(3): 638-643.
|
[12] |
Jin J, Ku YH, Kim Y, et al. Differential proteome profiling using iTRAQ in microalbuminuric and normoalbuminuric type 2 diabetic patients [J]. Exp Diabetes Res, 2012, 2012: 168602.
|
[13] |
Thrailkill KM, Nimmo T, Bunn RC, et al. Microalbuminuria in type 1 diabetes is associated with enhanced excretion of the endocytic multiligand receptors megalin and cubilin [J]. Diabetes Care, 2009, 32(7): 1266-1268.
|
[14] |
Hryciw DH, Lee EM, Pollock CA, et al. Molecular changes in proximal tubule function in diabetes mellitus [J]. Clin Exp Pharmacol Physiol, 2004, 31(5-6): 372-379.
|
[15] |
Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors [J]. Nat Rev Mol Cell Biol, 2002, 3(4): 256-266.
|
[16] |
Jiang H, Guan G, Zhang R, et al. Identification of urinary soluble E-cadherin as a novel biomarker for diabetic nephropathy [J]. Diabetes Metab Res Rev, 2009, 25(3): 232-241.
|
[17] |
Merchant ML, Perkins BA, Boratyn GM, et al. Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria [J]. J Am Soc Nephrol, 2009, 20(9): 2065-2074.
|
[18] |
Good DM, Zurbig P, Argiles A, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease [J]. Mol Cell Proteomics, 2010, 9(11): 2424-2437.
|
[19] |
Schanstra JP, Zurbig P, Alkhalaf A, et al. Diagnosis and prediction of CKD progression by assessment of urinary peptides [J]. J Am Soc Nephrol, 2015, 26(8): 1999-2010.
|
[20] |
Argiles A, Siwy J, Duranton F, et al. CKD273, a new proteomics classifier assessing CKD and its prognosis [J]. PLoS One, 2013, 8(5): e62837.
|
[21] |
Andersen S, Mischak H, Zurbig P, et al. Urinary proteome analysis enables assessment of renoprotective treatment in type 2 diabetic patients with microalbuminuria [J]. BMC Nephrol, 2010, 11: 29.
|
[22] |
Lindhardt M, Persson F, Currie G, et al. Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy in TYpe 2 diabetic patients with normoalbuminuria (PRIORITY): essential study design and rationale of a randomised clinical multicentre trial [J]. BMJ Open, 2016, 6(3): e010310.
|
[23] |
Betz BB, Jenks SJ, Cronshaw AD, et al. Urinary peptidomics in a rodent model of diabetic nephropathy highlights epidermal growth factor as a biomarker for renal deterioration in patients with type 2 diabetes [J]. Kidney Int, 2016, 89(5): 1125-1135.
|
[24] |
Siwy J, Zoja C, Klein J, et al. Evaluation of the Zucker diabetic fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles [J]. PLoS One, 2012, 7(12): e51334.
|
[25] |
Zubiri I, Posada-Ayala M, Benito-Martin A, et al. Kidney tissue proteomics reveals regucalcin downregulation in response to diabetic nephropathy with reflection in urinary exosomes [J]. Transl Res, 2015, 166(5): 474-484.
|
[26] |
Zubiri I, Posada-Ayala M, Sanz-Maroto A, et al. Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis [J]. J Proteomics, 2014, 96: 92-102.
|
[27] |
Raimondo F, Corbetta S, Morosi L, et al. Urinary exosomes and diabetic nephropathy: a proteomic approach [J]. Mol Biosyst, 2013, 9(6): 1139-1146.
|
[28] |
Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects [J]. Mol Cell Proteomics, 2002, 1(11): 845-867.
|
[29] |
Kim HJ, Cho EH, Yoo JH, et al. Proteome analysis of serum from type 2 diabetics with nephropathy [J]. J Proteome Res, 2007, 6(2): 735-743.
|
[30] |
Cho EH, Kim MR, Kim HJ, et al. The discovery of biomarkers for type 2 diabetic nephropathy by serum proteome analysis [J]. Proteomics Clin Appl, 2007, 1(4): 352-361.
|
[31] |
Yang Y, Zhang S, Lu B, et al. Predicting diabetic nephropathy by serum proteomic profiling in patients with type 2 diabetes [J]. Wien Klin Wochenschr, 2015, 127(17-18): 669-674.
|
[32] |
Nakatani S, Kakehashi A, Ishimura E, et al. Targeted proteomics of isolated glomeruli from the kidneys of diabetic rats: sorbin and SH3 domain containing 2 is a novel protein associated with diabetic nephropathy [J]. Exp Diabetes Res, 2011, 2011: 979354.
|
[33] |
Zhang D, Yang H, Kong X, et al. Proteomics analysis reveals diabetic kidney as a ketogenic organ in type 2 diabetes [J]. Am J Physiol Endocrinol Metab, 2011, 300(2): E287-E295.
|
[34] |
Fugmann T, Borgia B, Revesz C, et al. Proteomic identification of vanin-1 as a marker of kidney damage in a rat model of type 1 diabetic nephropathy [J]. Kidney Int, 2011, 80(3): 272-281.
|
[35] |
Tsai PY, Chen SM, Chen HY, et al. Proteome analysis of altered proteins in streptozotocin-induced diabetic rat kidney using the fluorogenic derivatization-liquid chromatography-tandem mass spectrometry method [J]. Biomed Chromatogr, 2013, 27(3): 382-389.
|