切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2019, Vol. 08 ›› Issue (01) : 13 -18. doi: 10.3877/cma.j.issn.2095-3216.2019.01.004

所属专题: 文献

论著

X-盒结合蛋白1条件性基因敲除小鼠模型的建立
刘天喜1, 宋琼2, 许国双3,(), 刘永鑫4   
  1. 1. 730000 兰州,兰州大学第一医院肾脏内科
    2. 730000 兰州,兰州大学第一医院肾脏内科;710032 西安,第四军医大学西京医院肾脏内科
    3. 710032 西安,第四军医大学西京医院肾脏内科
    4. 201203 上海南方模式生物发展有限公司
  • 收稿日期:2018-05-02 出版日期:2019-02-28
  • 通信作者: 许国双
  • 基金资助:
    国家自然科学基金(81470993;81272621); 百特公司腹膜透析专项课题(CHN-RENAL-IIS-2012-039); 西京医院新技术新业务(XJGX15Y45)

Establishment of conditional knockout mouse model of Xbp1 gene

Tianxi Liu1, Qiong Song2, Guoshuang Xu3,(), Yongxin Liu4   

  1. 1. Department of Nephropathy, First Hospital of Lanzhou University, Lanzhou 730000
    2. Department of Nephropathy, First Hospital of Lanzhou University, Lanzhou 730000; Department of Nephropathy, Xijing Hospital, Airforce Military Medical University, Xi′an 710032
    3. Department of Nephropathy, Xijing Hospital, Airforce Military Medical University, Xi′an 710032
    4. Shanghai Biomodel Organism Science & Technology Development Co., Ltd., Shanghai 201203; China
  • Received:2018-05-02 Published:2019-02-28
  • Corresponding author: Guoshuang Xu
  • About author:
    Corresponding author: Xu Guoshuang, Email:
引用本文:

刘天喜, 宋琼, 许国双, 刘永鑫. X-盒结合蛋白1条件性基因敲除小鼠模型的建立[J]. 中华肾病研究电子杂志, 2019, 08(01): 13-18.

Tianxi Liu, Qiong Song, Guoshuang Xu, Yongxin Liu. Establishment of conditional knockout mouse model of Xbp1 gene[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2019, 08(01): 13-18.

目的

建立可进行条件性敲除X-盒结合蛋白1(Xbp1)基因的flox杂合子小鼠。

方法

通过ET-clone的方法构建基于cre-loxp系统和FLP-frt系统的条件性基因打靶载体。载体线性化后电转JM8A3 ES细胞,经G418和Ganc筛选获得抗性ES细胞克隆。经长片段PCR鉴定获得正确同源重组的阳性克隆。阳性ES细胞经克隆扩增后,注射入C57BL/6J小鼠的囊胚中,获得嵌合鼠,筛选出高比例嵌合小鼠与野生型C57BL/6J小鼠交配后获得阳性F1代小鼠,并分别进行PCR和测序鉴定。

结果

成功构建打靶载体,共获得144个抗性ES细胞,克隆经长片段PCR鉴定,共获得4个正确同源重组的阳性克隆。获得4只阳性F1代小鼠,经测序鉴定正确。Xbp1基因flox杂合子小鼠表型无明显异常。

结论

成功构建了条件性敲除Xbp1基因的flox杂合子小鼠,为未来研究器官或组织特异性的Xbp1生物学作用奠定了基础。

Objective

To establish the flox-heterozygous mouse model in which the X-box-binding protein 1 (Xbp1) gene was conditionally knocked out.

Methods

The conditional gene-targeting vector, based on the cre-loxp system and the FLP-frt system, was constructed with the ET-clone method. The vectors were linearized and electroporated into the JM8A3 embryonic stem (ES) cells. The resistant ES cell clones were obtained through G418 and Ganc screening. The positive clones with correct homologous-recombination were obtained through identification with the long-range PCR method. Positive ES cells were clonally expanded, and injected into the blastocysts of C57BL/6J mice to obtain the chimeric mice. The high-rate chimeric mice were screened, and mated with the wild-type C57BL/6J mice to obtain the positive F1 mice, which were identified by PCR and sequencing.

Results

The targeting vectors were successfully constructed. A total of 144 resistant ES cell clones were obtained and identified by long-range PCR. Four positive homologous recombination clones were obtained. Four positive F1 mice were obtained and confirmed by sequencing. There was no obvious abnormality in the phenotypes of the Xbp1 gene flox-heterozygous mice.

Conclusion

The conditional knockout flox-heterozygous mouse model of Xbp1 gene was successfully established, which laid a foundation for further studies of the organ or tissue-specific biological effects of Xbp1 gene.

图1 Xbp1基因条件敲除flox小鼠设计策略示意图
图2 ES细胞鉴定策略示意图
图3 打靶载体质粒图谱
图4 Xbp1基因打靶载体酶切鉴定及线性化电泳图
图5 同源重组阳性ES细胞PCR鉴定电泳图
图6 F1代小鼠的PCR鉴定及测序鉴定
[1]
Zhang K,Shen X,Wu J, et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response [J]. Cell, 2006, 124(3): 587-599.
[2]
Glimcher LH. Xbp1: the last two decades [J]. Ann Rheum Dis, 2010, 69(Suppl 1): i67-i71.
[3]
Back SH,Schroder M,Lee K, et al. ER stress signaling by regulated splicing: IRE1/HAC1/Xbp1 [J]. Methods, 2005, 35(4): 395-416.
[4]
Lee AH,Iwakoshi NN,Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response [J]. Mol Cell biol, 2003, 23(21): 7448-7459.
[5]
Reimold AM,Etkin A,Clauss I, et al. An essential role in liver development for transcription factor Xbp-1 [J]. Genes Dev, 2000, 14(2): 152-157.
[6]
Reimold AM,Iwakoshi NN,Manis J, et al. Plasma cell differentiation requires the transcription factor Xbp-1 [J]. Nature, 2001, 412(6844): 300-307.
[7]
Liu P,Jenkins NA,Copeland NG. A highly efficient recombineering-based method for generating conditional knockout mutations [J]. Genome Res, 2003, 13(3): 476-484.
[8]
Heindryckx F,Binet F,Ponticos M, et al. Endoplasmic reticulum stress enhances fibrosis through IRE1alpha-mediated degradation of miR-150 and XBP-1 splicing [J]. EMBO Mol Med, 2016, 8(7): 729-744.
[9]
郑永. XBP1s在炎症诱导腹膜纤维化形成中的作用 [D]. 第四军医大学,2014.
[10]
桑景荭,刘欣. 基因敲除小鼠在疾病研究中的应用[J]. 生物学通报,2009,(12):3-6.
[11]
詹振宏,吴伟伟,田月珍,等. 基因打靶技术的研究进展[J]. 中国畜牧兽医,2011,(2):72-75.
[12]
石玉衡. 基因敲除模型小鼠在疾病研究中的应用[J]. 中国组织工程研究与临床康复,2011,(33): 6239-6242.
[13]
Nishihama R,Ishida S,Urawa H, et al. Conditional gene expression/deletion systems for Marchantia polymorpha using its own heat-shock promoter and Cre/loxp-mediated site-specific recombination [J]. Plant Cell Physiol, 2016, 57(2): 271-280.
[14]
Okuyama T,Isoe Y,Hoki M, et al. Controlled Cre/loxp site-specific recombination in the developing brain in medaka fish, Oryzias latipes [J]. PLoS One, 2013, 8(6): e66597.
[15]
Bouabe H,Okkenhaug K. Gene targeting in mice: a review [J]. Methods Mol Biol, 2013, 1064: 315-336.
[16]
Pei Z,Chen Q,Koren D, et al. Conditional knock-out of vesicular GABA transporter gene from starburst amacrine cells reveals the contributions of multiple synaptic mechanisms underlying direction selectivity in the retina [J]. J Neurosci, 2015, 35(38): 13219-13232.
[17]
Li J,Spensberger D,Ahn JS, et al. JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia [J]. Blood, 2010, 116(9): 1528-1538.
[18]
Korpershoek E,Loonen AJ,Corvers S, et al. Conditional Pten knock-out mice: a model for metastatic phaeochromocytoma [J]. J Pathol, 2009, 217(4): 597-604.
[1] 徐婷婷, 王晓东. 内质网应激及Wolframin蛋白质与妊娠相关疾病研究现状[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(04): 373-380.
[2] 杨浩, 李毅, 梁琰. 硫化氢调控微小核糖核酸对内质网应激影响的研究进展[J]. 中华损伤与修复杂志(电子版), 2019, 14(04): 307-310.
[3] 邹明, 李毅. 硫化氢对组织损伤后内质网应激影响的研究进展[J]. 中华损伤与修复杂志(电子版), 2017, 12(05): 378-381.
[4] 杨思园, 李辉, 李鑫, 蒋荣猛, 马成杰, 魏红山, 李兴旺. TOLL样受体信号转导通路在内质网应激致炎症反应中的作用[J]. 中华实验和临床感染病杂志(电子版), 2017, 11(03): 222-227.
[5] 林锐钿, 李子涵, 古丽莎. 内质网应激在骨代谢及其稳态中的作用[J]. 中华口腔医学研究杂志(电子版), 2021, 15(05): 309-313.
[6] 张翠荣. 脂联素通过PERK/eIF2a介导的内质网应激通路调节子宫内膜癌细胞增殖、凋亡和胰岛素敏感性[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 240-245.
[7] 雷艳, 詹世淮, 陈俊秋, 董会月, 林榕, 陈津, 王水良, 黄梁浒. CHOP双重调控衣霉素诱导的DU-145细胞凋亡及自噬的研究[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(05): 257-263.
[8] 郭兆安, 孙丽娜. 内质网应激及药物干预对糖尿病肾病足细胞损伤的作用[J]. 中华肾病研究电子杂志, 2021, 10(02): 96-99.
[9] 苏晓乐, 闫冰娟, 乔晞, 王艳红, 王利华. 阿托伐他汀调控PERK/eIF2α/CHOP通路减轻造影剂诱导的大鼠肾小管上皮细胞凋亡[J]. 中华肾病研究电子杂志, 2019, 08(03): 102-108.
[10] 杨鸿泽, 刘永鑫, 肖炎光, 许国双. XBP1s条件性过表达定点敲入小鼠模型的建立[J]. 中华肾病研究电子杂志, 2016, 05(06): 254-259.
[11] 赵玉青, 柴颖儒, 江莉, 安国霞, 柴晏. 高糖环境对心血管系统的影响及尼可地尔在心血管疾病中的应用[J]. 中华临床医师杂志(电子版), 2017, 11(21): 2373-2376.
[12] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[13] 赵倩倩, 姜颖哲, 班博, 邵倩. 内质网应激相关基因调控骨生长发育的研究进展[J]. 中华诊断学电子杂志, 2018, 06(04): 286-288.
[14] 刘丽芳, 刘学军, 杜毓锋, 薛彤彤. Ac-SDKP通过抑制内质网应激对肺纤维化细胞凋亡的影响[J]. 中华老年病研究电子杂志, 2016, 03(04): 33-40.
[15] 李祖寅, 周志杰, 晏滨, 王晓亮. 内质网应激在非酒精性脂肪肝病中的作用[J]. 中华肥胖与代谢病电子杂志, 2020, 06(02): 122-126.
阅读次数
全文


摘要