切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2019, Vol. 08 ›› Issue (05) : 213 -218. doi: 10.3877/cma.j.issn.2095-3216.2019.05.005

所属专题: 文献

论著

自噬和ASPPs在老年大鼠急性肾损伤早期的表达
李青霖1, 王小丹2, 傅博3, 周飞虎4,()   
  1. 1. 100853 北京,解放军总医院第一医学中心重症医学科
    2. 100853 解放军总医院第二医学中心保健科
    3. 100853 肾脏疾病国家重点实验室
    4. 100853 北京,解放军总医院第一医学中心重症医学科;100853 肾脏疾病国家重点实验室
  • 收稿日期:2019-01-08 出版日期:2019-10-28
  • 通信作者: 周飞虎
  • 基金资助:
    国家老年疾病临床医学研究中心课题(NCRCG-PLAGH-2017008); 吴阶平医学基金会临床科研专项资助(HRJJ20171039/320.6750.18383); 北京市科技计划课题(Z161100000116054)

Expression of autophagy and ASPPs in early acute kidney injury of aged rats

Qinglin Li1, Xiaodan Wang2, Bo Fu3, Feihu Zhou4,()   

  1. 1. Department of Critical Care Medicine, The First Medical Centre
    2. Department of Health Care, The Second Medical Centre
    3. State Key Laboratory of Kidney Diseases; Chinese PLA General Hospital, Beijing 100853, China
    4. Department of Critical Care Medicine, The First Medical Centre; State Key Laboratory of Kidney Diseases; Chinese PLA General Hospital, Beijing 100853, China
  • Received:2019-01-08 Published:2019-10-28
  • Corresponding author: Feihu Zhou
  • About author:
    Corresponding author: Zhou Feihu, Email:
引用本文:

李青霖, 王小丹, 傅博, 周飞虎. 自噬和ASPPs在老年大鼠急性肾损伤早期的表达[J/OL]. 中华肾病研究电子杂志, 2019, 08(05): 213-218.

Qinglin Li, Xiaodan Wang, Bo Fu, Feihu Zhou. Expression of autophagy and ASPPs in early acute kidney injury of aged rats[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2019, 08(05): 213-218.

目的

观察自噬相关蛋白和p53凋亡刺激蛋白(ASPPs)在肾损伤早期的表达变化,初步探讨自噬相关蛋白和ASPPs是否可能成为老年大鼠AKI早期生物标志物。

方法

建立顺铂致AKI青年与老年大鼠模型。雄性SD老年大鼠随机分为假手术组(Sham),顺铂模型组,同时设数量匹配的雄性SD青年大鼠为对照;模型组大鼠一次性腹腔注射顺铂4 mg/kg,Sham组相同途径注射生理盐水4 ml/kg;在给药12 h、1 d、3 d、5 d、7 d时检测大鼠Scr、BUN;光镜观察大鼠肾脏病理变化;透射电镜观察大鼠肾小管上皮细胞超微结构变化及自噬体的情况;免疫印迹法检测肾脏组织Beclin 1、溶酶体相关膜蛋白2(LAMP2)、p62、p53及ASPP抑制物(iASPP)和ASPP1表达情况。

结果

顺铂诱导12 h后,与Sham组比较,青年与老年大鼠Scr无明显变化(P>0.05);电镜观察到大鼠肾小管上皮细胞自噬体出现而且数量显著增多;老年大鼠肾组织Beclin 1、p62、LAMP-2和p53表达水平明显升高(P<0.05),iASPP表达水平明显降低(P<0.05),并且老年大鼠肾组织Beclin 1、LAMP-2和p53变化时间早于青年大鼠(P<0.05)。

结论

自噬和ASPPs在老年大鼠AKI发生早期即可出现,在Scr开始升高前,反应性自噬已经启动。自噬相关蛋白和ASPPs有望成为AKI早期的损伤标志物,可能是AKI早期干预的新靶点,但仍需更深入的研究。

Objective

To observe the expression changes of autophagy-related proteins and apoptosis-stimulating proteins of p53 (ASPPs) in early renal injury, and to explore whether autophagy-related proteins and ASPPs may become early biomarkers of acute kidney injury (AKI) in aged rats.

Methods

A cisplatin-induced AKI model was established in both young and old rats. Male SD rats were randomly divided into sham operation group and cisplatin model group, and a matched number of male young SD rats were as controls. Rats in the model group were given intraperitoneal injection of cisplatin 4 ml/kg, while rats in the sham group injected with normal saline 4 mg/kg. Rats were examined for Scr and BUN at 12 h, 1 day, 3 days, 5 days, and 7 days, and the pathological changes of rat kidney were observed by light microscopy. Ultrastructural changes and autophagosomes in rat renal tubular epithelial cells were observed under transmission electron microscopy. Western blotting was used to detect the expression of Beclin 1, LAMP-2, p62, p53, iASPP and ASPP1 in kidney tissues.

Results

After 12 hours of cisplatin induction, compared with the sham group, there was no significant change in Scr of young and old rats (P>0.05), and electron microscopy showed that autophagosomes in rat renal tubular epithelial cells appeared and the number increased significantly. The expression levels of Beclin 1, p62, LAMP-2, and p53 in the kidney of aged rats were significantly increased (P<0.05), with the expression level of iASPP being significantly decreased (P<0.05). And the renal expression of Beclin 1, LAMP-2, and p53 changed earlier in the old rats than in the young rats (P<0.05).

Conclusions

Autophagy and ASPPs appeared in the early stage of rat AKI, and reactive autophagy had started before Scr began to rise. Autophagy-associated proteins and ASPPs are expected to be earlier markers of AKI, and may be new targets for early intervention of AKI, which still need further research.

表1 各组大鼠血清Scr和BUN的变化
图1 各组青年与老年大鼠肾组织PAS染色图片( 400×)
图2 青年与老年大鼠肾小管上皮细胞自噬体电镜图片(50 000×)
图3 各组青年与老年大鼠平均出现的自噬体(个)
图4 不同观察时间青年与老年大鼠肾脏组织自噬相关蛋白表达变化
[1]
Anderson S, Eldadah B, Halter JB, et al. Acute kidney injury in older adults [J]. J Am Soc Nephrol, 2011, 22(1): 28-38.
[2]
Bouchard J, Soroko SB, Chertow GM, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury [J]. Kidney Int, 2009, 76(4): 422-427.
[3]
Chao C-T, Tsai H-B, Lin Y-F, et al. Acute kidney injury in the elderly: only the tip of the iceberg [J]. J Clin Gerontol Geriatr, 2014, 5(1): 7-12.
[4]
Iyngkaran P, Schneider H, Devarajan P, et al. Cardio-renal syndrome: new perspective in diagnostics [J]. Semin Nephrol, 2012, 32(1): 3-17.
[5]
程庆砾. 老年人急性肾损伤[J]. 临床肾脏病杂志,2015, 15(7):388-391.
[6]
李青霖,王小丹,杜婧,等. 自噬和p53凋亡刺激蛋白在大鼠急性肾损伤模型中的表达及早期诊断价值[J/CD]. 中华肾病研究电子杂志,2017, 6(3):120-126.
[7]
Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research [J]. Cell, 2010, 140(3): 313-326.
[8]
Salminen A, Kaarniranta K. Regulation of the aging process by autophagy [J]. Trends Mol Med, 2009, 15(5): 217-224.
[9]
Bolignano D, Mattace-Raso F, Sijbrands EJ, et al. The aging kidney revisited: a systematic review [J]. Ageing Res Rev, 2014, 14: 65-80.
[10]
孙雪峰. 老年人急性肾损伤特点[J].中国血液净化,2010, 9(3):123-125.
[11]
Crotzer VL, Blum JS. Autophagy and adaptive immunity [J]. Immunology, 2010, 131(1): 9-17.
[12]
Takabatake Y, Kimura T, Takahashi A, et al. Autophagy and the kidney: health and disease [J]. Nephrol Dial Transplant, 2014, 29(9): 1639-1647.
[13]
Shibutani ST, Yoshimori T. A current perspective of autophagosome biogenesis [J]. Cell Res, 2014, 24(1): 58-68.
[14]
Mehrpour M, Esclatine A, Beau I, et al. Overview of macroautophagy regulation in mammalian cells [J]. Cell Res, 2010, 20(7): 748-762.
[15]
Klionsky DJ, Abdalla FC, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy [J]. Autophagy, 2012, 8(4): 445-544.
[16]
Lenoir O, Tharaux PL, Huber TB. Autophagy in kidney disease and aging: lessons from rodent models [J]. Kidney Int, 2016, 90(5): 950-964.
[17]
Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging [J]. Cell, 2011, 146(5): 682-695.
[18]
Jiang M, Wei Q, Dong G, et al. Autophagy in proximal tubules protects against acute kidney injury [J]. Kidney Int, 2012, 82(12): 1271-1283.
[19]
Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein [J]. Cell Res, 2007, 17(10): 839-849.
[20]
Xiong J, Xia M, Xu M, et al. Autophagy maturation associated with CD38-mediated regulation of lysosome function in mouse glomerular podocytes [J]. J Cell Mol Med, 2013, 17(12): 1598-1607.
[21]
Nezis IP, Stenmark H. p62 at the interface of autophagy, oxidative stress signaling, and cancer [J]. Antioxid Redox Signal, 2012, 17(5): 786-793.
[22]
Maiuri MC, Galluzzi L, Morselli E, et al. Autophagy regulation by p53 [J]. Curr Opin Cell Biol, 2010, 22(2): 181-185.
[23]
López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging [J]. Cell, 2013, 153(6): 1194-1217.
[24]
Wang Y, Godin-Heymann N, Dan Wang X, et al. ASPP1 and ASPP2 bind active RAS, potentiate RAS signalling and enhance p53 activity in cancer cells [J]. Cell Death Differ, 2013, 20(4): 525-534.
[25]
Wang Y, Wang XD, Lapi E, et al. Autophagic activity dictates the cellular response to oncogenic RAS [J]. Proc Natl Acad Sci USA, 2012, 109(33): 13325-13330.
[26]
Wilson AM, Morquette B, Abdouh M, et al. ASPP1/2 regulate p53-dependent death of retinal ganglion cells through PUMA and Fas/CD95 activation in vivo [J]. J Neurosci, 2013, 33(5): 2205-2216.
[27]
Eskelinen EL. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy [J]. Mol Aspects Med, 2006, 27(5): 495-502.
[1] 杨桂清, 孟静静. 哺乳期亚临床乳腺炎的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 376-379.
[2] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[3] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[4] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[5] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[6] 甘志新, 胡雍军, 肖晶, 胡明冬. 降钙素原在脓毒血症与肺部感染中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 663-666.
[7] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[8] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[9] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[10] 潘冬生, 梁国标. 颅脑创伤治疗的最新进展与未来趋势[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 193-197.
[11] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[12] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[13] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[14] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[15] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
阅读次数
全文


摘要