切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2019, Vol. 08 ›› Issue (06) : 269 -272. doi: 10.3877/cma.j.issn.2095-3216.2019.06.008

所属专题: 文献

综述

补体在IgA肾病发生发展中的作用
张岩1, 段姝伟1, 蔡广研1, 陈香美1,()   
  1. 1. 100853 北京,解放军总医院第一医学中心肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室(2011DAV00088)、国家慢性肾病临床医学研究中心、 肾脏疾病研究北京市重点实验室
  • 收稿日期:2019-04-02 出版日期:2019-12-28
  • 通信作者: 陈香美
  • 基金资助:
    北京市科委IgA肾病项目(D181100000118002)

The role of the complements in the development of IgA nephropathy

Yan Zhang1, Shuwei Duan1, Guangyan Cai1, Xiangmei Chen1,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Nephrology, Beijing 100853, China
  • Received:2019-04-02 Published:2019-12-28
  • Corresponding author: Xiangmei Chen
  • About author:
    Corresponding author: Chen Xiangmei, Email:
引用本文:

张岩, 段姝伟, 蔡广研, 陈香美. 补体在IgA肾病发生发展中的作用[J]. 中华肾病研究电子杂志, 2019, 08(06): 269-272.

Yan Zhang, Shuwei Duan, Guangyan Cai, Xiangmei Chen. The role of the complements in the development of IgA nephropathy[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2019, 08(06): 269-272.

IgA肾病的发生与自身免疫相关,其特征为肾小球系膜区IgA沉积。IgA肾病的发病机制尚不清楚,但现已证实补体异常活化在IgA肾病发生发展中起重要作用,参与IgA肾病发生发展过程的主要为补体替代途径和凝集素途径。本文就补体系统在IgA肾病发生发展中的作用进行了综述。

IgA nephropathy is considered as an autoimmune disease, and characterized by the deposition of IgA in the mesangium of glomeruli. The pathogenesis of IgA nephropathy is not clear, but it has been confirmed that the complement system abnormally activated plays a critical role in the development of IgA nephropathy. Recent studies indicated that the complement activation in IgA nephropathy is mainly via the alternative pathway and lectin pathway. In this review, the contribution of the complement system to the IgA nephropathy was summarized.

[4]
Radford MG Jr, Donadio JV Jr, Bergstralh EJ, et al. Predicting renal outcome in IgA nephropathy [J]. J Am Soc Nephrol, 1997, 8(2): 199-207.
[5]
Espinosa M, Ortega R, Sánchez M, et al. Association of C4d deposition with clinical outcomes in IgA nephropathy [J]. Clin J Am Soc Nephrol, 2014, 9(5): 897-904
[6]
Daha MR, van Kooten C. Role of complement in IgA nephropathy [J]. J Nephrol, 2016, 29(1): 1-4.
[7]
Janssen BJ, Christodoulidou A, McCarthy A, et al. Structure of C3b reveals conformational changes that underlie complement activity [J]. Nature, 2006, 444(7116): 213-216.
[8]
Yeo SC, Cheung CK, Barratt J. New insights into the pathogenesis of IgA nephropathy [J]. Pediatr Nephrol, 2018, 33(5): 763-777.
[9]
Floege J, Daha MR. IgA nephropathy: new insights into the role of complement [J]. Kidney Int, 2018, 94(1): 16-18.
[10]
Onda K, Ohsawa I, Ohi H, et al. Excretion of complement proteins and its activation marker C5b-9 in IgA nephropathy in relation to renal function [J]. BMC Nephrology, 2011, 12: 64.
[11]
Onda K, Ohi H, Tamano M, et al. Hypercomplementemia in adult patients with IgA nephropathy [J]. J Clin Lab Anal, 2007, 21(2): 77-84.
[12]
Hiemstra PS, Gorter A, Stuurman ME, et al. Activation of the alternative pathway of complement by human serum IgA [J]. Eur J Immunol, 1987, 17(3): 321-326.
[13]
Maillard N, Wyatt RJ, Julian BA, et al. Current understanding of the role of complement in IgA nephropathy [J]. J Am Soc Nephrol, 2015, 26(7): 1503-1512.
[14]
朱厉,张宏. IgA肾病的精准医学研究进展_IgA肾病中补体系统的活化及临床意义[J] .中华医学杂志,2018,298(14):1044-1047.
[15]
Gharavi AG, Kiryluk K, Choi M, et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy [J]. Nat Genet, 2011, 43(4): 321-327.
[16]
Medjeral-Thomas N, Pickering MC. The complement factor H-related proteins [J]. Immunol Rev, 2016, 274(1): 191-201.
[17]
Goicoechea de Jorge E, Caesar JJ, Malik TH, et al. Dimerization of complement factor H-related proteins modulates complement activation in vivo [J]. Proc Natl Acad Sci USA, 2013, 110(12): 4685-4690.
[18]
Zhai YL, Meng SJ, Zhu L, et al. Rare variants in the complement factor H-related protein 5 gene contribute to genetic susceptibility to IgA nephropathy [J]. J Am Soc Nephrol, 2016, 27(9): 2894-2905.
[19]
Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, et al. Human IgA activates the complement system via the mannan-binding lectin pathway [J]. J Immunol, 2001, 167(5): 2861-2868.
[20]
Roos A, Rastaldi MP, Calvaresi N, et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease [J]. J Am Soc Nephrol, 2006, 17(6): 1724-1734.
[21]
Chandra P. C4d in native glomerular diseases [J]. Am J Nephrol, 2019, 49(1): 81-92.
[22]
Gong R, Liu Z, Li L. Mannose-binding lectin gene polymorphism associated with the patterns of glomerular immune deposition in IgA nephropathy [J]. Scand J Urol Nephrol, 2001, 35(3): 228-232.
[23]
Shi B, Wang L, Mou S, et al. Identification of mannose-binding lectin as a mechanism in progressive immunoglobulin A nephropathy [J]. Int J Clin Exp Pathol, 2015, 8(2): 1889-1899.
[24]
Lee HJ, Choi SY, Jeong KH, et al. Association of C1q deposition with renal outcomes in IgA nephropathy [J]. Clin Nephrol, 2013, 80(2): 98-104.
[25]
丁冉冉,邢广群,王纪霞,等. IgA肾病患者补体经典途径在血液及尿液中的活化及与肾损伤的关系[J]. 临床内科杂志,2014,31(3) 186-188.
[26]
Zwirner J, Burg M, Schulze M, et al. Activated complement C3: a potentially novel predictor of progressive IgA nephropathy [J]. Kidney Int, 1997, 51(4): 1257-1264.
[27]
Kim SJ, Koo HM, Lim BJ, et al. Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy [J]. PLoS One, 2012, 7(7): e40495.
[28]
Guo ZY, Zhou SG, Wang YY, et al. Clinico-pathological characteristics and prognosis of IgA nephropathy patients with microalbuminuria and deposition of complement C3 [J]. Zhonghua Yi Xue Za Zhi, 2016, 96(9): 707-711.
[29]
Katafuchi R, Nagae H, Masutani K, et al. Comprehensive evaluation of the significance of immunofluorescent findings on clinicopathological features in IgA nephropathy [J]. Clin Exp Nephrol, 2019, 23(2): 169-181.
[30]
Kawasaki Y, Maeda R, Ohara S, et al. Serum IgA/C3 and glomerular C3 staining predict severity of IgA nephropathy [J]. Pediatr Int, 2018, 60(2): 162-167.
[31]
Caliskan Y, Ozluk Y, Celik D, et al. The clinical significance of uric acid and complement activation in the progression of IgA nephropathy [J]. Kidney Blood Press Res, 2016, 41(2): 148-157.
[32]
Suzuki H, Ohsawa I, Kodama F, et al. Fluctuation of serum C3 levels reflects disease activity and metabolic background in patients with IgA nephropathy [J]. J Nephrol, 2013, 26(4): 708-715.
[33]
Zhu B, Zhu CF, Lin Y, et al. Clinical characteristics of IgA nephropathy associated with low complement 4 levels [J]. Ren Fail, 2014, 37(3): 424-432.
[1]
Floege J, Moura IC, Daha MR. New insights into the pathogenesis of IgA nephropathy [J]. Semin Immunopathol, 2014, 36(4): 431-442.
[2]
Li LS, Liu ZH. Epidemiologic data of renal diseases from a single unit in China: analysis based on 13,519 renal biopsies [J]. Kidney Int, 2004, 66(3): 920-923.
[3]
Schena FP, Nistor I. Epidemiology of IgA nephropathy: a global perspective [J]. Semin Nephrol, 2018, 38(5): 435-442.
[34]
Pan M, Zhang J, Li Z, et al. Increased C4 and decreased C3 levels are associated with a poor prognosis in patients with immunoglobulin A nephropathy: a retrospective study [J]. BMC Nephrol, 2017, 18(1): 231-238.
[35]
Wen L, Zhao Z, Wang Z, et al. High levels of urinary complement proteins are associated with chronic renal damage and proximal tubule dysfunction in IgA nephropathy [J]. Nephrology (Carlton), 2019, 24(7): 703-710.
[36]
Zhang JJ, Jiang L, Liu G, et al. Levels of urinary complement factor H in patients with IgA nephropathy are closely associated with disease activity [J]. Scand J Immunol, 2009, 69(5): 457-464.
[37]
Zhu L, Guo WY, Shi SF, et al. Circulating complement factor H-related protein 5 levels contribute to development and progression of IgA nephropathy [J]. Kidney Int, 2018, 94(1): 150-158.
[38]
Medjeral-Thomas NR, Lomax-Browne HJ, Beckwith H, et al. Circulating complement factor H-related proteins 1 and 5 correlate with disease activity in IgA nephropathy [J]. Kidney Int, 2017, 92(4): 942-952.
[39]
Pan M, Zhou Q, Zheng S, et al. Serum C3/C4 ratio is a novel predictor of renal prognosis in patients with IgA nephropathy: a retrospective study [J]. Immunol Res, 2018, 66(3): 381-391.
[40]
Segarra-Medrano A, Carnicer-Caceres C, Valtierra-Carmeno N, et al. Study of the variables associated with local complement activation in IgA nephropathy [J]. Nefrologia, 2017, 37(3): 320-329.
[41]
Sahin OZ, Yavas H, Tasll Fi, et al. Prognostic value of glomerular C4d staining in patients with IgA nephritis [J]. Int J Clin Exp Pathol, 2014, 7(6): 3299-3304.
[42]
Guo WY, Zhu L, Meng SJ, et al. Mannose-binding lectin levels could predict prognosis in IgA nephropathy [J]. J Am Soc Nephrol, 2017, 28(11): 3175-3181.
[43]
Liu LL, Jiang Y, Wang LN, et al. Urinary mannose-binding lectin is a biomarker for predicting the progression of immunoglobulin (Ig)A nephropathy [J]. Clin Exp Immunol, 2012, 169(2): 148-155.
[44]
Medjeral-Thomas NR, Troldborg A, Constantinou N, et al. Progressive IgA nephropathy is associated with low circulating mannan-binding lectin-associated serine protease-3 (MASP-3) and increased glomerular factor H-related protein-5 (FHR5) deposition [J]. Kidney Int Rep, 2018, 3(2): 426-438.
[1] 董才韬, 周大为, 梁峻滔, 叶啟发. 免疫抑制剂治疗肾移植术后复发性IgA肾病研究进展[J]. 中华移植杂志(电子版), 2021, 15(06): 365-369.
[2] 邓荣珍, 罗宇珍, 赵若蓓, 邓杨, 廖蕴华, 潘玲. 血脂与IgA肾病患者肾脏预后的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(01): 13-19.
[3] 谭惠丰, 曹沛莲, 张慧, 强胜. Notch信号通路对IgA肾病大鼠外周血Th17细胞数量及功能的影响[J]. 中华肾病研究电子杂志, 2021, 10(05): 259-264.
[4] 金美玲, 李艳春, 王佳, 张敏, 李新, 赵素梅, 徐晨. 基于生物信息学的IgA肾病基因富集及免疫细胞浸润分析[J]. 中华肾病研究电子杂志, 2021, 10(04): 205-213.
[5] 董玉, 尚顺来, 李清刚, 陈香美. 来氟米特联合甲泼尼龙治疗IgA肾病的疗效观察[J]. 中华肾病研究电子杂志, 2020, 09(03): 102-106.
[6] 谢院生. 对IgA肾病治疗的新认识[J]. 中华肾病研究电子杂志, 2020, 09(03): 144-144.
[7] 陈玉贞, 徐家云. 来氟米特联合中小剂量糖皮质激素治疗慢性进展性IgA肾病的疗效及安全性分析[J]. 中华肾病研究电子杂志, 2019, 08(05): 208-212.
[8] 朱逸云, 王琳, 陈以平. 基于"中医传承辅助平台"分析探讨陈以平教授治疗IgA肾病用药规律的研究[J]. 中华肾病研究电子杂志, 2019, 08(05): 201-207.
[9] 谢院生, 陈香美. IgA肾病的诊治研究进展[J]. 中华肾病研究电子杂志, 2019, 08(01): 1-5.
[10] 郑维, 吕杨, 耿晓东, 洪权, 吴镝. IgA肾病患者肾脏组织中差异细胞因子的探索研究[J]. 中华肾病研究电子杂志, 2018, 07(03): 97-101.
[11] 袁川, 列才华. IgA肾病IgA1糖基化异常及相关中医药干预进展[J]. 中华肾病研究电子杂志, 2018, 07(03): 139-142.
[12] 段姝伟, 张岩, 吴杰, 孟金铃, 刘述文, 谢院生, 蔡广研. 少量蛋白尿IgA肾病患者镜下血尿与病理指标的相关性分析[J]. 中华肾病研究电子杂志, 2018, 07(03): 102-106.
[13] 刘键, 段姝伟, 陈香美. IgA肾病预后评估方法研究进展[J]. 中华肾病研究电子杂志, 2017, 06(05): 233-238.
[14] 朱合, 徐道亮, 刘昌华, 伍刚, 高波, 毕光宇. IgA肾病发病机制-IgA1异常糖基化与免疫异常[J]. 中华肾病研究电子杂志, 2017, 06(04): 182-185.
[15] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
阅读次数
全文


摘要