切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (02) : 113 -116. doi: 10.3877/cma.j.issn.2095-3216.2021.02.011

所属专题: 文献

综述

腺相关病毒与肾小管靶向基因转导
马强1, 敖强国1, 张雅宾1, 程庆砾1,()   
  1. 1. 100853 北京,解放军总医院第二医学中心肾脏病科暨全国老年病研究所
  • 收稿日期:2020-12-21 出版日期:2021-04-30
  • 通信作者: 程庆砾

Adeno-associated virus and renal tubular-targeted gene transduction

Qiang Ma1, Qiangguo Ao1, Yabin Zhang1, Qingli Cheng1,()   

  1. 1. Department of Nephrology and National Institute of Geriatrics, Second Medical Center of General Hospital of Chinese PLA, Beijing 100853, China
  • Received:2020-12-21 Published:2021-04-30
  • Corresponding author: Qingli Cheng
引用本文:

马强, 敖强国, 张雅宾, 程庆砾. 腺相关病毒与肾小管靶向基因转导[J]. 中华肾病研究电子杂志, 2021, 10(02): 113-116.

Qiang Ma, Qiangguo Ao, Yabin Zhang, Qingli Cheng. Adeno-associated virus and renal tubular-targeted gene transduction[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(02): 113-116.

肾脏的基因治疗近些年研究较多并取得了一定的进展,其研究热点主要集中在腺相关病毒。本文概述了腺相关病毒在基因转导的研究进展,综述了靶向肾小管的基因转导的不同途径和基因载体,探讨了腺相关病毒靶向肾小管的基因转导策略及存在的问题。

Renal gene therapy has been studied in recent years, and some progress has been made. The research focus was mainly on adeno-associated virus. This article summarized the research progress of adeno-associated virus in gene transduction, reviewed the different transduction pathways and gene vectors of gene transduction targeting the renal tubules, and discussed the gene transduction strategies and the existing problems in adeno-associated virus gene transduction targeting the renal tubules.

图1 AAV转染细胞模式图[12]
图2 靶向肾小管基因导入的主要途径和载体
[1]
Davis L, Park F. Gene therapy research for kidney diseases [J]. Physiol Genomics, 2019, 51(9): 449-461.
[2]
Isaka Y. Gene therapy targeting kidney diseases: routes and vehicles [J]. Clin Exp Nephrol, 2006, 10(4): 229-235.
[3]
Hanss B, Bruggeman LA. Applications of gene therapy to kidney disease [J]. Curr Opin Nephrol Hypertens, 2003, 12(4): 439-445.
[4]
Fisher KJ, Jooss K, Alston J, et al. Recombinant adeno-associated virus for muscle-directed gene therapy [J]. Nat Med, 1997, 3(3): 306-312.
[5]
Bell SC, Mall MA, Gutierrez H, et al. The future of cystic fibrosis care: a global perspective [J]. Lancet Respir Med, 2020, 8(1): 65-124.
[6]
Miller DG, Stamatoyannopoulos G. Gene therapy for hemophilia [J]. N Engl J Med, 2001, 344(23): 1782-1784.
[7]
Streck CJ, Dickson PV, Ng CY, et al. Antitumor efficacy of AAV-mediated systemic delivery of interferon-β [J]. Cancer Gene Ther, 2006, 13(1): 99-106.
[8]
Hoyng SA, De Winter F, Gnavi S, et al. Gene delivery to rat and human Schwann cells and nerve segments: a comparison of AAV 1-9 and lentiviral vectors [J]. Gene Ther, 2015, 22(10): 767-780.
[9]
Takeda S, Takahashi M, Mizukami H, et al. Successful gene transfer using adeno-associated virus vectors into the kidney: comparison among adeno-associated virus serotype 1-5 vectors in vitro and in vivo [J]. Nephron Exp Nephrol, 2004, 96(4): e119-e126.
[10]
Opie SR, Warrington KH, McKenna MA, et al. Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding [J]. J Virol, 2003, 77(12): 6995-7006.
[11]
彭建强,谭淑萍,董小岩,等. 2型重组腺相关病毒体外转导培养细胞的研究[J]. 病毒学报,2004, 20(2): 128-132.
[12]
Shao W, Pei X, Cui C, et al. Superior human hepatocyte transduction with adeno-associated virus vector serotype 7 [J]. Gene Ther, 2019, 26(12): 504-514.
[13]
Hanlon KS, Kleinstiver BP, Garcia SP, et al. High levels of AAV vector integration into CRISPR-induced DNA breaks [J]. Nat Commun, 2019, 10(1): 4439.
[14]
Li C, Bowles DE, Dyke T, et al. Adeno-associated virus vectors: potential applications for cancer gene therapy [J]. Cancer Gene Ther, 2005, 12(12): 913-925.
[15]
Chamberlain JR, Schwarze U, Wang PR, et al. Gene targeting in stem cells from individuals with osteogenesis imperfecta [J]. Science, 2004, 303(5661): 1198-1201.
[16]
van Breukelen B, Kanellopoulos PN, Tucker PA, et al. The formation of a flexible DNA-binding protein chain is required for efficient DNA unwinding and adenovirus DNA chain elongation [J]. J Biol Chem, 2000, 275(52): 40897-40903.
[17]
Ginocchio VM, Ferla R, Auricchio A, et al. Current status on clinical development of adeno-associated virus-mediated liver-directed gene therapy for inborn errors of metabolism [J]. Hum Gene Ther, 2019, 30(10): 1204-1210.
[18]
Moullier P, Friedlander G, Calise D, et al. Adenoviral-mediated gene transfer to renal tubular cells in vivo [J]. Kidney Int, 1994, 45(4): 1220-1225.
[19]
Lai LW, Chan DM, Erickson RP, et al. Correction of renal tubular acidosis in carbonic anhydrase ii-deficient mice with gene therapy [J]. J Clin Invest, 1998, 10(7): 1320-1325.
[20]
Lien YH, Lai LW. Liposome-mediated gene transfer into the tubules [J]. Exp Nephrol, 1997, 5(2): 132-136.
[21]
Heikkila P, Parpala T, Lukkarinen O, et al. Adenovirus-mediated gene transfer into kidney glomeruli using an ex vivo and in vivo kidney perfusion system: first steps towards gene therapy of Alport syndrome [J]. Gene Ther, 1996, 3(1): 21-27.
[22]
Rocca CJ, Cherqui S. Gene transfer to mouse kidney in vivo [J]. Methods Mol Biol, 2019, 1937: 227-234.
[23]
Noiri E, Peresleni T, Miller F, et al. In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia [J]. J Clin Invest, 1996, 97(10): 2377-2783.
[24]
Haller H, Maasch C, Dragun D, et al. Antisense oligodeoxynucleotide strategies in renal and cardiovascular disease [J]. Kidney Int, 1998, 53(6): 1550-1558.
[25]
Yang B, Ma T, Dong JY, et al. Partial correction of the urinary concentrating defect in aquaporin-1 null mice by adenovirus-mediated gene delivery [J]. Hum Gene Ther, 2000, 11(4): 567-575.
[26]
Cheng QL, Chen XM, Li F, et al. Effects of ICAM-1 antisense oligonucleotide on the tubulointerstitium in mice with unilateral ureteral obstruction [J]. Kidney Int, 2000, 57(1): 183-190.
[27]
Choi YK, Kim YJ, Park HS, et al. Suppression of glomerulosclerosis by adenovirus-mediated IL-10 expression in the kidney [J]. Gene Ther, 2003, 10(7): 559-568.
[28]
Gusella GL, Fedorova E, Hanss B, et al. Lentiviral gene transduction of kidney [J]. Hum Gene Ther, 2002, 13(3): 407-414.
[29]
Hwang J, Singh N, Long C, et al. The lentiviral system construction for highly expressed porcine stearoyl-CoA desaturase-1 and functional characterization in stably transduced porcine swine kidney cells [J]. Lipids, 2018, 53(10): 933-945.
[30]
黄云剑,赵景宏,张憬,等. Smad6和Smad7基因治疗对肾小管间质纤维化进程的影响[J]. 中华肾脏病杂志,2004, 20(5): 358-363.
[31]
Lipkowitz MS, Hanss B, Tulchin N, et al. Transduction of renal cells in vitro and in vivo by adeno-associated virus gene therapy vectors [J]. J Am Soc Nephrol, 1999, 10(9): 1908-1915.
[32]
Chen S, Agarwal A, Glushakova OY, et al. Gene delivery in renal tubular epithelial cells using recombinant adeno-associated viral vectors [J]. J Am Soc Nephrol, 2003, 14(4): 947-958.
[33]
Wang X, Skelley L, Cade R, et al. AAV delivery of mineralocorticoid receptor shRNA prevents progression of cold-induced hypertension and attenuates renal damage [J]. Gene Therapy, 2006, 13(14): 1097-1103.
[34]
蔡美顺,于仲元,田松,等. 肾囊药物向肾组织内转运的实验研究[J]. 中华医学杂志,2001, 81(6): 360-363.
[35]
朱虎章,王文洁,黄大伟,等. 肾囊注射甲基泼尼松龙治疗糖尿病肾病的临床研究[J]. 中国中西医结合肾病杂志,2003, 4(7): 412.
[36]
赵慧萍,李欣,甘良英,等. 大鼠肾囊内β-半乳糖苷酶基因注入及其在肾脏内的局部表达[J]. 中国血液净化,2005, 4(6): 322-325, 335.
[37]
Goncalves MA, van der Velde I, Janssen JM, et al. Efficient generation and amplification of high-capacity adeno-associated virus/adenovirus hybrid vectors [J]. J Virol, 2002, 76(21): 10734-10744.
[38]
Wang Y, Camp SM, Niwano M, et al. Herpes simplex virus type 1/adeno-associated virus rep(+) hybrid amplicon vector improves the stability of transgene expression in human cells by site-specific integration [J]. J Viro, 2002, 76(14): 7150-7162.
[39]
McCarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis [J]. Gene Ther, 2001, 8(16): 1248-1254.
[40]
Chao H, Sun L, Bruce A, et al. Expression of human factor VIII by splicing between dimerized AAV vectors [J]. Mol Ther, 2002, 5(6): 716-722.
[1] 梁雄发, 卢小刚, 陈东, 蓝创歆, 黄健, 曾滔, 赖永长, 陈康, 吴文起. 肾小管上皮细胞损伤促进草酸钙结石形成的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2018, 12(04): 281-283.
[2] 王卫东, 陈佳, 何娅妮, 陈客宏. 尿诱骗受体2/肌酐水平与糖尿病肾小管病预后的关系[J]. 中华肾病研究电子杂志, 2023, 12(02): 61-66.
[3] 沈婉君, 王田田, 尹智炜, 谢院生. 免疫电镜技术在肾脏疾病诊断和研究中的应用[J]. 中华肾病研究电子杂志, 2022, 11(04): 219-223.
[4] 贾丽芳, 张玉萍, 白文英, 周培一, 王甲正. 长链非编码核糖核酸LINC00261通过miR-148b-3p/PTEN途径对高糖环境中HK-2细胞的保护作用[J]. 中华肾病研究电子杂志, 2022, 11(01): 22-28.
[5] 陈钰澜, 陈健文, 朱飞, 王田田, 张妍, 刘娇娜, 黄梦杰, 吴玲玲, 陈香美. 紫草素抑制缺血再灌注肾损伤后肾小管细胞的增殖和迁移[J]. 中华肾病研究电子杂志, 2022, 11(01): 15-21.
[6] 苏涛. 免疫检查点抑制剂相关肾脏损伤[J]. 中华肾病研究电子杂志, 2021, 10(06): 301-305.
[7] 王田田, 吴玲玲, 赵颖华, 吴杰, 陈香美. YWHAZ对肾小管上皮细胞增殖的影响[J]. 中华肾病研究电子杂志, 2020, 09(03): 107-111.
[8] 夏园园, 蔡广研. 血管抑素的功能及其在慢性肾脏病中的作用[J]. 中华肾病研究电子杂志, 2017, 06(02): 79-82.
[9] 汪东生, 吴理达, 顾雨春. 细胞基因疗法在视网膜退行性疾病中的应用和挑战[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 129-133.
[10] 廖雪莲, 康焰. 脓毒症所致急性肾损伤的研究进展[J]. 中华重症医学电子杂志, 2017, 03(04): 301-304.
[11] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[12] 何天齐, 张晓韬, 王敏, 李秀华. 腺相关病毒在帕金森病研究中的应用进展[J]. 中华临床医师杂志(电子版), 2020, 14(08): 643-647.
[13] 尹志强, 邢万红, 马捷, 杨建新. 基因转导技术治疗心力衰竭的研究进展[J]. 中华临床医师杂志(电子版), 2018, 12(03): 160-163.
[14] 李小彦, 赵乃倩, 韩金祥, 冯子凌, 王丽. 内源性果糖在糖尿病肾病小管损伤中的作用及其机制[J]. 中华临床医师杂志(电子版), 2017, 11(16): 2144-2148.
[15] 何圣清, 袁唯唯, 孟莞瑞, 符青松, 郑晓斌, 武红梅. 达格列净联合二甲双胍治疗对早期2型糖尿病肾病患者肾小管功能和血清Klotho的影响[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 236-242.
阅读次数
全文


摘要