切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (06) : 301 -305. doi: 10.3877/cma.j.issn.2095-3216.2021.06.001

述评

免疫检查点抑制剂相关肾脏损伤
苏涛1()   
  1. 1. 100034 北京大学第一医院肾脏内科、北京大学肾脏病研究所
  • 收稿日期:2021-08-02 出版日期:2021-12-28
  • 通信作者: 苏涛
  • 基金资助:
    重大新药创制科技重大专项基金(2017ZX09304028); 中国医学科学院医学与健康科技创新工程项目(2019-I2M-5-046)

Immune checkpoint inhibitor-related kidney injury

Tao Su1,()   

  1. 1. Department of Nephrology, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
  • Received:2021-08-02 Published:2021-12-28
  • Corresponding author: Tao Su
引用本文:

苏涛. 免疫检查点抑制剂相关肾脏损伤[J]. 中华肾病研究电子杂志, 2021, 10(06): 301-305.

Tao Su. Immune checkpoint inhibitor-related kidney injury[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(06): 301-305.

免疫检查点抑制剂(ICIs)是常用的肿瘤免疫治疗药物,主要包括针对细胞毒性T淋巴细胞相关蛋白4、程序性死亡分子1及其配体等靶抗原的单克隆抗体。肾脏免疫相关不良事件是ICIs引起机体免疫增强所导致的肾损伤,从孤立性电解质紊乱、蛋白尿,到透析依赖性急性肾损伤都可能发生,病理表现以肾小管间质炎最常见。外周免疫耐受状态的破坏、自身反应性或药物反应性T细胞激活等机制导致发病,且受到个体易感性因素的影响,与不同的药物类型、单药或联合治疗、较低的基线肾小球滤过率、合并使用质子泵抑制剂、年龄等有关。提高认识、早期诊断和识别肾脏并发症的类型,是获得最佳疗效的前提,在复杂情况下建议肾活检协助诊断和预后判断。及时合理的以糖皮质激素为基础的治疗方案,有助于改善肾脏预后。

Immune checkpoint inhibitors (ICIs) are commonly used in cancer immunotherapy, mainly including monoclonal antibodies against target antigens such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed death protein-1 (PD-1), and its ligand (PD-L1). Renal immune-related adverse events (irAE) are caused by ICIs-induced immune enhancement, including solitary electrolyte imbalance, proteinuria, and even dialysis-dependent acute kidney injury, with tubulointerstitial inflammation as the most common pathological finding. The renal irAEs can be induced through mechanisms of the destruction of peripheral immune tolerance and the activation of self-reactive or drug-specific reactive T cells, and can be affected by individual susceptibility factors, different drug types, single-agent or combination therapy, low baseline eGFR, combined-use of proton pump inhibitors (PPI), and age, etc. Raising awareness, early diagnosis, and early identification of the types of renal complications are the prerequisites for obtaining the best therapeutic effect, and renal biopsy is recommended to assist both diagnosis and prognosis judgment in complex situations. Timely and reasonable treatment plan based on glucocorticoids may help improve the renal prognosis.

[1]
Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy [J]. Cell, 2017, 168(4): 707-723.
[2]
Thompson JA. New NCCN guidelines: recognition and management of immunotherapy-related toxicity [J]. J Natl Compr Cancer Netw, 2018, 16(5S): 594-596.
[3]
Cortazar FB, Marrone KA, Troxell ML, et al. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors [J]. Kidney Int, 2016, 90(3): 638-647.
[4]
Perazella MA, Sprangers B. Checkpoint inhibitor therapy-associated acute kidney injury: time to move on to evidence-based recommendations [J]. Clin Kidney J, 2021, 14(5): 1301-1306.
[5]
Seethapathy H, Zhao S, Chute DF, et al. The incidence, causes, and risk factors of acute kidney injury in patients receiving immune checkpoint inhibitors [J]. Clin J Am Soc Nephrol, 2019, 14(12): 1692-1700.
[6]
Wanchoo R, Karam S, Uppal NN, et al. Adverse renal effects of immune checkpoint inhibitors: a narrative review [J]. Am J Nephrol, 2017, 45(2): 160-169.
[7]
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity′s roles in cancer suppression and promotion [J]. Science, 2011, 331(6024): 1565-1570.
[8]
Borst J, Busselaar J, Bosma DMT, et al. Mechanism of action of PD-1 receptor/ligand targeted cancer immunotherapy [J]. Eur J Immunol, 2021, 51(8): 1911-1920.
[9]
Wherry EJ. T cell exhaustion [J]. Nat Immunol, 2011, 12(6): 492-499.
[10]
Cortazar FB, Kibbelaar ZA, Glezerman IG, et al. Clinical features and outcomes of immune checkpoint inhibitor-associated AKI: a multicenter study [J]. J Am Soc Nephrol, 2020, 31(2): 435-446.
[11]
Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer [J]. N Engl J Med, 2019, 381(21): 2020-2031.
[12]
Perazella MA, Shirali AC. Immune checkpoint inhibitor nephrotoxicity: what do we know and what should we do? [J]. Kidney Int, 2020, 97(1): 62-74.
[13]
Blank ML, Parkin L, Paul C, et al. A nationwide nested case-control study indicates an increased risk of acute interstitial nephritis with proton pump inhibitor use [J]. Kidney Int, 2014, 86(4): 837-844.
[14]
Chute DF, Zhao S, Strohbehn IA, et al. Incidence and predictors of CKD and estimated GFR decline in patients receiving immune checkpoint inhibitors [J]. Am J Kidney Dis, 2021, Epub ahead of print.
[15]
Shimamura Y, Watanabe S, Maeda T, et al. Incidence and risk factors of acute kidney injury, and its effect on mortality among Japanese patients receiving immune check point inhibitors: a single-center observational study [J]. Clin Exp Nephrol, 2021, 25(5): 479-487.
[16]
Scanvion Q, Béné J, Gautier S, et al. Moderate-to-severe eosinophilia induced by treatment with immune checkpoint inhibitors: 37 cases from a national reference center for hypereosinophilic syndromes and the French pharmacovigilance database [J]. Oncoimmunology, 2020, 9(1): 1722022.
[17]
Fadel F, El Karoui K, Knebelmann B. Anti-CTLA4 antibody-induced lupus nephritis [J]. N Engl J Med, 2009, 361(2): 211-212.
[18]
Izzedine H, Gueutin V, Gharbi C, et al. Kidney injuries related to ipilimumab [J]. Invest New Drugs, 2014, 32(4): 769-773.
[19]
Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade [J]. N Engl J Med, 2016, 375(18): 1749-1755.
[20]
Ding H, Wu X, Gao W. PD-L1 is expressed by human renal tubular epithelial cells and suppresses T cell cytokine synthesis [J]. Clin Immunol, 2005, 115(2): 184-191.
[21]
Hakroush S, Kopp SB, Tampe D, et al. Variable expression of programmed cell death protein 1-ligand 1 in kidneys independent of immune checkpoint inhibition [J]. Front Immunol, 2021, 11: 624547.
[22]
Jaworska K, Ratajczak J, Huang L, et al. Both PD-1 ligands protect the kidney from ischemia reperfusion injury [J]. J Immunol, 2015, 194(1): 325-333.
[23]
Kim SH, Park SJ, Han KH et al. Pathogenesis of minimal change nephrotic syndrome: an immunological concept [J]. Korean J Pediatr, 2016, 59(5): 205-211.
[24]
Hou Q, Xu H. Rational discovery of response biomarkers: candidate prognostic factors and biomarkers for checkpoint inhibitor-based immunotherapy [J]. Adv Exp Med Biol, 2020, 1248: 143-166.
[25]
Franzin R, Netti GS, Spadaccino F, et al. The use of immune checkpoint inhibitors in oncology and the occurrence of AKI: where do we stand? [J]. Front Immunol, 2020, 11: 574271.
[26]
Izzedine H, Mathian A, Champiat S, et al. Renal toxicities associated with pembrolizumab [J]. Clin Kidney J, 2019, 12(1): 81-88.
[27]
Kitchlu A, Jhaveri KD, Wadhwani S, et al. A systematic review of immune checkpoint inhibitor-associated glomerular disease [J]. Kidney Int Rep, 2021, 6(1): 66-77.
[28]
Takahashi N, Tsuji K, Tamiya H, et al. Goodpasture′s disease in a patient with advanced lung cancer treated with nivolumab: an autopsy case report [J]. Lung Cancer, 2018, 122: 22-24.
[29]
Del Bello A, Zakaroff AG, Meyer N, et al. Cytokine storm induced by a PD1 inhibitor in a renal transplant patient [J]. Am J Transplant, 2021, 21(7): 2616-2618.
[30]
Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline [J]. J Clin Oncol, 2018, 36(17): 1714-1768.
[31]
Isik B, Alexander MP, Manohar S, et al. Biomarkers, clinical features, and rechallenge for immune checkpoint inhibitor renal immune-related adverse events [J]. Kidney Int Rep, 2021, 6(4): 1022-1031.
[32]
Sun PP, Zhou XJ, Su JQ, et al. Urine macrophages reflect kidney macrophage content during acute tubular interstitial and glomerular injury [J]. Clin Immunol, 2019, 205: 65-74.
[33]
Kim MG, Lim K, Lee YJ, et al. M2 macrophages predict worse long-term outcomes in human acute tubular necrosis [J]. Sci Rep, 2020, 10(1): 2122.
[34]
Herrmann SM, Perazella MA. Immune checkpoint inhibitors and immune-related adverse renal events [J]. Kidney Int Rep, 2020, 5(8): 1139-1148.
[35]
Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates [J]. J Clin Oncol, 2010, 28(19): 3167-3175.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[3] 莫小乔, 胡喆莹, 廖冬花, 谢天. 脓毒症继发急性肾损伤患者死亡风险预测模型构建及评估[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 198-206.
[4] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[5] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[6] 杨秀君, 崔梦莹, 张丹, 曲仙智, 苗云皓, 盛基尧, 郑戈, 刘水, 张学文. 信迪利单抗联合仑伐替尼成功转化治疗不可切除肝癌一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 581-584.
[7] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[8] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[9] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[10] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[11] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[12] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[13] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[14] 梁文龙, 曹杰, 黄庆, 林泳, 黄红丽, 杨平, 李冠炜, 胡鹤. 信迪利单抗联合瑞戈非尼治疗晚期结直肠癌的疗效与安全性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 409-413.
[15] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
阅读次数
全文


摘要