切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (06) : 301 -305. doi: 10.3877/cma.j.issn.2095-3216.2021.06.001

述评

免疫检查点抑制剂相关肾脏损伤
苏涛1()   
  1. 1. 100034 北京大学第一医院肾脏内科、北京大学肾脏病研究所
  • 收稿日期:2021-08-02 出版日期:2021-12-28
  • 通信作者: 苏涛
  • 基金资助:
    重大新药创制科技重大专项基金(2017ZX09304028); 中国医学科学院医学与健康科技创新工程项目(2019-I2M-5-046)

Immune checkpoint inhibitor-related kidney injury

Tao Su1,()   

  1. 1. Department of Nephrology, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
  • Received:2021-08-02 Published:2021-12-28
  • Corresponding author: Tao Su
引用本文:

苏涛. 免疫检查点抑制剂相关肾脏损伤[J/OL]. 中华肾病研究电子杂志, 2021, 10(06): 301-305.

Tao Su. Immune checkpoint inhibitor-related kidney injury[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(06): 301-305.

免疫检查点抑制剂(ICIs)是常用的肿瘤免疫治疗药物,主要包括针对细胞毒性T淋巴细胞相关蛋白4、程序性死亡分子1及其配体等靶抗原的单克隆抗体。肾脏免疫相关不良事件是ICIs引起机体免疫增强所导致的肾损伤,从孤立性电解质紊乱、蛋白尿,到透析依赖性急性肾损伤都可能发生,病理表现以肾小管间质炎最常见。外周免疫耐受状态的破坏、自身反应性或药物反应性T细胞激活等机制导致发病,且受到个体易感性因素的影响,与不同的药物类型、单药或联合治疗、较低的基线肾小球滤过率、合并使用质子泵抑制剂、年龄等有关。提高认识、早期诊断和识别肾脏并发症的类型,是获得最佳疗效的前提,在复杂情况下建议肾活检协助诊断和预后判断。及时合理的以糖皮质激素为基础的治疗方案,有助于改善肾脏预后。

Immune checkpoint inhibitors (ICIs) are commonly used in cancer immunotherapy, mainly including monoclonal antibodies against target antigens such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed death protein-1 (PD-1), and its ligand (PD-L1). Renal immune-related adverse events (irAE) are caused by ICIs-induced immune enhancement, including solitary electrolyte imbalance, proteinuria, and even dialysis-dependent acute kidney injury, with tubulointerstitial inflammation as the most common pathological finding. The renal irAEs can be induced through mechanisms of the destruction of peripheral immune tolerance and the activation of self-reactive or drug-specific reactive T cells, and can be affected by individual susceptibility factors, different drug types, single-agent or combination therapy, low baseline eGFR, combined-use of proton pump inhibitors (PPI), and age, etc. Raising awareness, early diagnosis, and early identification of the types of renal complications are the prerequisites for obtaining the best therapeutic effect, and renal biopsy is recommended to assist both diagnosis and prognosis judgment in complex situations. Timely and reasonable treatment plan based on glucocorticoids may help improve the renal prognosis.

[1]
Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy [J]. Cell, 2017, 168(4): 707-723.
[2]
Thompson JA. New NCCN guidelines: recognition and management of immunotherapy-related toxicity [J]. J Natl Compr Cancer Netw, 2018, 16(5S): 594-596.
[3]
Cortazar FB, Marrone KA, Troxell ML, et al. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors [J]. Kidney Int, 2016, 90(3): 638-647.
[4]
Perazella MA, Sprangers B. Checkpoint inhibitor therapy-associated acute kidney injury: time to move on to evidence-based recommendations [J]. Clin Kidney J, 2021, 14(5): 1301-1306.
[5]
Seethapathy H, Zhao S, Chute DF, et al. The incidence, causes, and risk factors of acute kidney injury in patients receiving immune checkpoint inhibitors [J]. Clin J Am Soc Nephrol, 2019, 14(12): 1692-1700.
[6]
Wanchoo R, Karam S, Uppal NN, et al. Adverse renal effects of immune checkpoint inhibitors: a narrative review [J]. Am J Nephrol, 2017, 45(2): 160-169.
[7]
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity′s roles in cancer suppression and promotion [J]. Science, 2011, 331(6024): 1565-1570.
[8]
Borst J, Busselaar J, Bosma DMT, et al. Mechanism of action of PD-1 receptor/ligand targeted cancer immunotherapy [J]. Eur J Immunol, 2021, 51(8): 1911-1920.
[9]
Wherry EJ. T cell exhaustion [J]. Nat Immunol, 2011, 12(6): 492-499.
[10]
Cortazar FB, Kibbelaar ZA, Glezerman IG, et al. Clinical features and outcomes of immune checkpoint inhibitor-associated AKI: a multicenter study [J]. J Am Soc Nephrol, 2020, 31(2): 435-446.
[11]
Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer [J]. N Engl J Med, 2019, 381(21): 2020-2031.
[12]
Perazella MA, Shirali AC. Immune checkpoint inhibitor nephrotoxicity: what do we know and what should we do? [J]. Kidney Int, 2020, 97(1): 62-74.
[13]
Blank ML, Parkin L, Paul C, et al. A nationwide nested case-control study indicates an increased risk of acute interstitial nephritis with proton pump inhibitor use [J]. Kidney Int, 2014, 86(4): 837-844.
[14]
Chute DF, Zhao S, Strohbehn IA, et al. Incidence and predictors of CKD and estimated GFR decline in patients receiving immune checkpoint inhibitors [J]. Am J Kidney Dis, 2021, Epub ahead of print.
[15]
Shimamura Y, Watanabe S, Maeda T, et al. Incidence and risk factors of acute kidney injury, and its effect on mortality among Japanese patients receiving immune check point inhibitors: a single-center observational study [J]. Clin Exp Nephrol, 2021, 25(5): 479-487.
[16]
Scanvion Q, Béné J, Gautier S, et al. Moderate-to-severe eosinophilia induced by treatment with immune checkpoint inhibitors: 37 cases from a national reference center for hypereosinophilic syndromes and the French pharmacovigilance database [J]. Oncoimmunology, 2020, 9(1): 1722022.
[17]
Fadel F, El Karoui K, Knebelmann B. Anti-CTLA4 antibody-induced lupus nephritis [J]. N Engl J Med, 2009, 361(2): 211-212.
[18]
Izzedine H, Gueutin V, Gharbi C, et al. Kidney injuries related to ipilimumab [J]. Invest New Drugs, 2014, 32(4): 769-773.
[19]
Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade [J]. N Engl J Med, 2016, 375(18): 1749-1755.
[20]
Ding H, Wu X, Gao W. PD-L1 is expressed by human renal tubular epithelial cells and suppresses T cell cytokine synthesis [J]. Clin Immunol, 2005, 115(2): 184-191.
[21]
Hakroush S, Kopp SB, Tampe D, et al. Variable expression of programmed cell death protein 1-ligand 1 in kidneys independent of immune checkpoint inhibition [J]. Front Immunol, 2021, 11: 624547.
[22]
Jaworska K, Ratajczak J, Huang L, et al. Both PD-1 ligands protect the kidney from ischemia reperfusion injury [J]. J Immunol, 2015, 194(1): 325-333.
[23]
Kim SH, Park SJ, Han KH et al. Pathogenesis of minimal change nephrotic syndrome: an immunological concept [J]. Korean J Pediatr, 2016, 59(5): 205-211.
[24]
Hou Q, Xu H. Rational discovery of response biomarkers: candidate prognostic factors and biomarkers for checkpoint inhibitor-based immunotherapy [J]. Adv Exp Med Biol, 2020, 1248: 143-166.
[25]
Franzin R, Netti GS, Spadaccino F, et al. The use of immune checkpoint inhibitors in oncology and the occurrence of AKI: where do we stand? [J]. Front Immunol, 2020, 11: 574271.
[26]
Izzedine H, Mathian A, Champiat S, et al. Renal toxicities associated with pembrolizumab [J]. Clin Kidney J, 2019, 12(1): 81-88.
[27]
Kitchlu A, Jhaveri KD, Wadhwani S, et al. A systematic review of immune checkpoint inhibitor-associated glomerular disease [J]. Kidney Int Rep, 2021, 6(1): 66-77.
[28]
Takahashi N, Tsuji K, Tamiya H, et al. Goodpasture′s disease in a patient with advanced lung cancer treated with nivolumab: an autopsy case report [J]. Lung Cancer, 2018, 122: 22-24.
[29]
Del Bello A, Zakaroff AG, Meyer N, et al. Cytokine storm induced by a PD1 inhibitor in a renal transplant patient [J]. Am J Transplant, 2021, 21(7): 2616-2618.
[30]
Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline [J]. J Clin Oncol, 2018, 36(17): 1714-1768.
[31]
Isik B, Alexander MP, Manohar S, et al. Biomarkers, clinical features, and rechallenge for immune checkpoint inhibitor renal immune-related adverse events [J]. Kidney Int Rep, 2021, 6(4): 1022-1031.
[32]
Sun PP, Zhou XJ, Su JQ, et al. Urine macrophages reflect kidney macrophage content during acute tubular interstitial and glomerular injury [J]. Clin Immunol, 2019, 205: 65-74.
[33]
Kim MG, Lim K, Lee YJ, et al. M2 macrophages predict worse long-term outcomes in human acute tubular necrosis [J]. Sci Rep, 2020, 10(1): 2122.
[34]
Herrmann SM, Perazella MA. Immune checkpoint inhibitors and immune-related adverse renal events [J]. Kidney Int Rep, 2020, 5(8): 1139-1148.
[35]
Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates [J]. J Clin Oncol, 2010, 28(19): 3167-3175.
[1] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[2] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[3] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[4] 汤宏涛, 何坤. 中晚期肝细胞癌介入治疗的进展及前景[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 305-308.
[5] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[6] 郑琪, 马婕群, 张彦兵, 廖子君, 张锐. EPHA5突变预测肺腺癌免疫检查点抑制剂治疗预后的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 548-552.
[7] 胡志伟, 吴继敏, 邓昌荣, 战秀岚, 纪涛, 王峰, 田书瑞, 陈冬, 张玉, 刘健男, 宋庆. 抗反流黏膜套扎治疗顽固性胃食管反流病[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(04): 227-233.
[8] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[9] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国肝移植受者肾损伤管理临床实践指南(2023版)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 276-288.
[10] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[11] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[12] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[13] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[14] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?