切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2024, Vol. 13 ›› Issue (02) : 79 -86. doi: 10.3877/cma.j.issn.2095-3216.2024.02.004

论著

间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析
史敬萱1, 焦圆圆2, 田景玮3, 卓莉4,()   
  1. 1. 100029 北京,中日友好临床医学研究所;100029 北京,中日友好医院肾病科
    2. 100037 北京,中国医学科学院阜外医院肾内科
    3. 100029 北京,首都医科大学中日友好临床医学院;100007 北京市第六医院肾内科
    4. 100029 北京,中日友好医院肾病科
  • 收稿日期:2023-02-14 出版日期:2024-04-28
  • 通信作者: 卓莉
  • 基金资助:
    中日友好医院"菁英计划"人才培育工程(ZRJY2021-BJ07)

Efficacy of mesenchymal stem cells-derived exosomes in the treatment of diabetic kidney disease in animals: a meta-analysis

Jingxuan Shi1, Yuanyuan Jiao2, Jingwei Tian3, Li Zhuo4,()   

  1. 1. China-Japan Friendship Institute of Clinical Medical Sciences, Beijing 100029; Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029
    2. Department of Nephrology, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037
    3. Capital Medical University China-Japan Friendship School of Clinical Medicine, Beijing 100029; Department of Nephrology, Beijing Sixth Hospital, Beijing 100007; China
    4. Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029
  • Received:2023-02-14 Published:2024-04-28
  • Corresponding author: Li Zhuo
引用本文:

史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.

Jingxuan Shi, Yuanyuan Jiao, Jingwei Tian, Li Zhuo. Efficacy of mesenchymal stem cells-derived exosomes in the treatment of diabetic kidney disease in animals: a meta-analysis[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2024, 13(02): 79-86.

目的

系统地评价间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果。

方法

检索Embase和PubMed数据库中有关间充质干细胞来源外泌体治疗糖尿病肾脏病动物的相关文章,检索时间为各数据库自建立至2022年11月25日。应用SYRCLE动物实验偏倚风险评估表对文献进行质量评价。采用Cochrane协作网运营的RevMan5.4软件进行Meta分析。

结果

共纳入4篇随机对照动物实验,共有不少于98只动物,其中外泌体治疗组动物不少于33只,空白对照组动物32只,动物模型对照组动物不少于33只。Meta分析结果显示:间充质干细胞来源外泌体治疗糖尿病肾脏病动物后,血尿素氮水平(SMD=-1.97,95%CI:-3.56~-0.39,P=0.01)和血糖水平(SMD=-1.98,95%CI:-17.45~-2.22,P=0.002)降低,而体重(SMD=-1.47,95%CI:-0.21~3.16,P=0.09)、尿肌酐(SMD=-1.34,95%CI:-7.51~4.83,P=0.67)和24 h尿白蛋白(SMD=-3.29,95%CI:-8.40~-1.82,P=0.21)没有明显差异。

结论

间充质干细胞来源外泌体在糖尿病肾脏病动物治疗中具有一定效果,尚需进一步研究、验证。

Objective

To systematacially evaluate the efficacy of exosomes derived from mesenchymal stem cells in the treatment of diabetic kidney disease of animals.

Methods

Relevant articles in the Embase and PubMed databases were retrieved on mesenchymal stem cells-derived exosomes in the treatment of diabetic kidney disease of mice. The retrieval time was from the establishment of the databases until November 25, 2022. SYRCLE′s risk of bias tool was used to evaluate the risk of bias of the animal studies. Meta-analysis was performed by means of the RevMan5.4 software from the Cochrane Collaboration network.

Results

A total of 4 randomized controlled animal experiments were included. There were altogether no less than 98 mice, with no less than 33 mice in the exosome treatment group, 32 mice in the blank control group, and no less than 33 mice in the animal model control group. The results of meta-analysis showed that the blood urea nitrogen level (SMD=-1.97, 95%CI: -3.56 to -0.39, P=0.01) and blood glucose level (SMD=-1.98, 95%CI: -17.45 to -2.22, P=0.002) decreased significantly, while the changes of body weight (SMD=-1.47, 95%CI: -0.21 to 3.16, P=0.09), urinary creatinine (SMD=-1.34, 95%CI: -7.51 to 4.83, P=0.67), and 24 h urinary albumin (SMD=-3.29, 95%CI: -8.40 to -1.82, P=0.21) were of no significant difference after the treatment with exosomes derived from mesenchymal stem cells in the mice diabetic nephropathy animals.

Conclusions

Exosomes derived from mesenchymal stem cells had certain efficacy in the treatment of diabetic kidney disease of animals, which still need to be further studied and verified.

表1 检索策略的PICOS原则
图1 文献检索流程图
表2 纳入文献基本特征
表3 纳入文献偏倚风险评价表SYRCLE动物实验风险评估量表
图2 外泌体治疗组与动物模型对照组糖尿病肾病小鼠体重变化的Meta分析
图3 空白对照组与外泌体治疗组小鼠体重变化的Meta分析
图4 外泌体治疗组与动物模型对照组小鼠尿肌酐水平的Meta分析
图5 空白对照组与外泌体治疗组小鼠尿肌酐水平的Meta分析
图6 外泌体治疗组与动物模型对照组小鼠尿素氮水平的Meta分析
图7 空白对照组与外泌体治疗组小鼠尿素氮水平的Meta分析
图8 外泌体治疗组与动物模型对照组小鼠血糖水平的Meta分析
图9 空白对照组与外泌体治疗组小鼠血糖水平的Meta分析
图10 外泌体治疗组与动物模型对照组DN小鼠24小时尿白蛋白水平的Meta分析
图11 空白对照组与外泌体治疗组小鼠24小时尿白蛋白水平的Meta分析
图12 血糖所纳入文献的结局指标漏斗图
[1]
Bell S, Fletcher EH, Brady I, et al. End-stage renal disease and survival in people with diabetes: a national database linkage study [J]. QJM, 2015, 108(2): 127-134.
[2]
Heerspink HJL, Parving HH, Andress DL, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial [J]. Lancet, 2019, 393(10184): 1937-1947.
[3]
National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 update [J]. Am J Kidney Dis, 2012, 60(5): 850-886.
[4]
American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2020 [J]. Diabetes Care, 2020, 43(Suppl 1): S14-S31.
[5]
Doshi SM, Friedman AN. Diagnosis and management of type 2 diabetic kidney disease [J]. Clin J Am Soc Nephrol, 2017, 12(8): 1366-1373.
[6]
Fried LF, Emanuele N, Zhang JH, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy [J]. N Engl J Med, 2013, 369(20): 1892-903.
[7]
Orbay H, Tobita M, Mizuno H. Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications [J]. Stem Cells Int, 2012, 2012: 461718.
[8]
Venkat P, Shen Y, Chopp M, et al. Cell-based and pharmacological neurorestorative therapies for ischemic stroke [J]. Neuropharmacology, 2018, 134(Pt B): 310-322.
[9]
Mennan C, Brown S, McCarthy H, et al. Mesenchymal stromal cells derived from whole human umbilical cord exhibit similar properties to those derived from Wharton′s jelly and bone marrow [J]. FEBS Open Bio, 2016, 6(11): 1054-1066.
[10]
Peired AJ, Sisti A, Romagnani P. Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence [J]. Stem Cells Int, 2016, 2016: 4798639.
[11]
Zhang Q, Fu L, Liang Y, et al. Exosomes originating from MSCs stimulated with TGF-β and IFN-γ promote Treg differentiation [J]. J Cell Physiol, 2018, 233(9): 6832-6840.
[12]
Liu H, Liang Z, Wang F, et al. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism [J]. JCI Insight, 2019, 4(24): e131273.
[13]
Baharlooi H, Azimi M, Salehi Z, et al. Mesenchymal stem cell-derived exosomes: a promising therapeutic ace card to address autoimmune diseases [J]. Int J Stem Cells, 2020, 13(1): 13-23.
[14]
Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy [J]. Stem Cells, 2017, 35(4): 851-858.
[15]
Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming [J]. Nat Med, 2001, 7(3): 297-303.
[16]
André F, Schartz NE, Chaput N, et al. Tumor-derived exosomes: a new source of tumor rejection antigens [J]. Vaccine, 2002, 20(Suppl 4): A28-A31.
[17]
Romagnoli GG, Zelante BB, Toniolo PA, et al. Dendritic cell-derived exosomes may be a tool for cancer immunotherapy by converting tumor cells into immunogenic targets [J]. Front Immunol, 2015, 5: 692.
[18]
Tang XJ, Sun XY, Huang KM, et al. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy [J]. Oncotarget, 2015, 6(42): 44179-44190.
[19]
Lu J, Wu J, Tian J, et al. Role of T cell-derived exosomes in immunoregulation [J]. Immunol Res, 2018, 66(3): 313-322.
[20]
Liu Y, Lou G, Li A, et al. AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages [J]. EBioMedicine, 2018, 36: 140-150.
[21]
Wu Y, Li J, Yuan R, et al. Bone marrow mesenchymal stem cell-derived exosomes alleviate hyperoxia-induced lung injury via the manipulation of microRNA-425 [J]. Arch Biochem Biophys, 2021, 697: 108712.
[22]
Li Z, Liu F, He X, et al. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia [J]. Int Immunopharmacol, 2019, 67: 268-280.
[23]
Hassanzadeh A, Rahman HS, Markov A, et al. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities [J]. Stem Cell Res Ther, 2021, 12(1): 297.
[24]
Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization [J]. J Neuroinflammation, 2020, 17(1): 47.
[25]
Soundara Rajan T, Giacoppo S, Diomede F, et al. Human periodontal ligament stem cells secretome from multiple sclerosis patients suppresses NALP3 inflammasome activation in experimental autoimmune encephalomyelitis [J]. Int J Immunopathol Pharmacol, 2017, 30(3): 238-252.
[26]
Moghadasi S, Elveny M, Rahman HS, et al. A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine [J]. J Transl Med, 2021, 19(1): 302.
[27]
Hooijmans CR, Rovers MM, de Vries RB, et al. SYRCLE′s risk of bias tool for animal studies [J]. BMC Med Res Methodol, 2014, 14: 43.
[28]
Wang S, Bao L, Fu W, et al. Protective effect of exosomes derived from bone marrow mesenchymal stem cells on rats with diabetic nephropathy and its possible mechanism [J]. Am J Transl Res, 2021, 13(6): 6423-6430.
[29]
Nagaishi K, Mizue Y, Chikenji T, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes [J]. Sci Rep, 2016, 6: 34842.
[30]
Li H, Rong P, Ma X, et al. Mouse umbilical cord mesenchymal stem cell paracrine alleviates renal fibrosis in diabetic nephropathy by reducing myofibroblast transdifferentiation and cell proliferation and upregulating MMPs in mesangial cells [J]. J Diabetes Res, 2020, 2020: 3847171.
[31]
Duan YR, Chen BP, Chen F, et al. Exosomal microRNA-16-5p from human urine-derived stem cells ameliorates diabetic nephropathy through protection of podocyte [J]. J Cell Mol Med, 2021, 25(23): 10798-10813.
[32]
Fineberg D, Jandeleit-Dahm KA, Cooper ME. Diabetic nephropathy: diagnosis and treatment [J]. Nat Rev Endocrinol, 2013, 9(12): 713-723.
[33]
Sierra-Mondragon E, Molina-Jijon E, Namorado-Tonix C, et al. All-trans retinoic acid ameliorates inflammatory response mediated by TLR4/NF-κB during initiation of diabetic nephropathy [J]. J Nutr Biochem, 2018, 60: 47-60.
[34]
Arora MK, Singh UK. Oxidative stress: meeting multiple targets in pathogenesis of diabetic nephropathy [J]. Curr Drug Targets, 2014, 15(5): 531-538.
[35]
Lagies S, Pichler R, Bork T, et al. Impact of diabetic stress conditions on renal cell metabolome [J]. Cells, 2019, 8(10): 1141-1141.
[36]
Chawla D, Bansal S, Banerjee BD, et al. Role of advanced glycation end product (AGE)-induced receptor (RAGE) expression in diabetic vascular complications [J]. Microvasc Res, 2014, 95: 1-6.
[37]
Jiang W, Li Z, Zhao W, et al. Breviscapine attenuated contrast medium-induced nephropathy via PKC/Akt/MAPK signalling in diabetic mice [J]. Am J Transl Res, 2016, 8(2): 329-341.
[38]
陈辛玲,王生兰. 细胞自噬过程、通路、调控及其与肺动脉高压的多重相关性[J].中国组织工程研究2021, 25(2): 311-316.
[39]
郭园园. AGEs通过诱导巨噬细胞自噬影响糖尿病创面愈合的机制研究[D]. 上海:上海交通大学,2016.
[40]
Prasad A, Lane JR, Tsimikas S, et al. Plasma levels of advanced glycation end products are related to the clinical presentation and angiographic severity of symptomatic lower extremity peripheral arterial disease [J]. Int J Angiol, 2016, 25(1): 44-53.
[41]
Lenoir O, Jasiek M, Hénique C, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis [J]. Autophagy, 2015, 11(7): 1130-1145.
[42]
Cui X, Zhu L, Zhai R, et al. Mesenchymal stem cell-derived exosomes: a promising vector in treatment for diabetes and its microvascular complications [J]. Am J Transl Res, 2021, 13(5): 3942-3953.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 蚁淳, 袁冬生, 熊学军. 系统免疫炎症指数与骨密度降低和骨质疏松的关联[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 609-617.
[3] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[6] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[7] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[8] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[9] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[10] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[11] 马振威, 宋润夫, 王兵. ERCP胆道内支架与骑跨十二指肠乳头支架置入治疗不可切除肝门部胆管癌疗效的Meta分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 807-812.
[12] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[13] 涂晓文. 糖尿病肾脏病的靶点药物研发进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 240-240.
[14] 王芳, 刘达, 左智炜, 盛金平, 陈庭进, 蒋锐. 定量CT与双能X线骨密度仪对骨质疏松诊断效能比较的Meta分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 363-371.
[15] 周倩妹, 王宪娥, 徐筱, 老慧琳, 赵欣悦, 胡菁颖. 多元化系统护理对老年人群牙周健康指标影响的系统评价[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 500-506.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?