切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2024, Vol. 13 ›› Issue (02) : 79 -86. doi: 10.3877/cma.j.issn.2095-3216.2024.02.004

论著

间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析
史敬萱1, 焦圆圆2, 田景玮3, 卓莉4,()   
  1. 1. 100029 北京,中日友好临床医学研究所;100029 北京,中日友好医院肾病科
    2. 100037 北京,中国医学科学院阜外医院肾内科
    3. 100029 北京,首都医科大学中日友好临床医学院;100007 北京市第六医院肾内科
    4. 100029 北京,中日友好医院肾病科
  • 收稿日期:2023-02-14 出版日期:2024-04-28
  • 通信作者: 卓莉
  • 基金资助:
    中日友好医院"菁英计划"人才培育工程(ZRJY2021-BJ07)

Efficacy of mesenchymal stem cells-derived exosomes in the treatment of diabetic kidney disease in animals: a meta-analysis

Jingxuan Shi1, Yuanyuan Jiao2, Jingwei Tian3, Li Zhuo4,()   

  1. 1. China-Japan Friendship Institute of Clinical Medical Sciences, Beijing 100029; Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029
    2. Department of Nephrology, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037
    3. Capital Medical University China-Japan Friendship School of Clinical Medicine, Beijing 100029; Department of Nephrology, Beijing Sixth Hospital, Beijing 100007; China
    4. Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029
  • Received:2023-02-14 Published:2024-04-28
  • Corresponding author: Li Zhuo
引用本文:

史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.

Jingxuan Shi, Yuanyuan Jiao, Jingwei Tian, Li Zhuo. Efficacy of mesenchymal stem cells-derived exosomes in the treatment of diabetic kidney disease in animals: a meta-analysis[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2024, 13(02): 79-86.

目的

系统地评价间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果。

方法

检索Embase和PubMed数据库中有关间充质干细胞来源外泌体治疗糖尿病肾脏病动物的相关文章,检索时间为各数据库自建立至2022年11月25日。应用SYRCLE动物实验偏倚风险评估表对文献进行质量评价。采用Cochrane协作网运营的RevMan5.4软件进行Meta分析。

结果

共纳入4篇随机对照动物实验,共有不少于98只动物,其中外泌体治疗组动物不少于33只,空白对照组动物32只,动物模型对照组动物不少于33只。Meta分析结果显示:间充质干细胞来源外泌体治疗糖尿病肾脏病动物后,血尿素氮水平(SMD=-1.97,95%CI:-3.56~-0.39,P=0.01)和血糖水平(SMD=-1.98,95%CI:-17.45~-2.22,P=0.002)降低,而体重(SMD=-1.47,95%CI:-0.21~3.16,P=0.09)、尿肌酐(SMD=-1.34,95%CI:-7.51~4.83,P=0.67)和24 h尿白蛋白(SMD=-3.29,95%CI:-8.40~-1.82,P=0.21)没有明显差异。

结论

间充质干细胞来源外泌体在糖尿病肾脏病动物治疗中具有一定效果,尚需进一步研究、验证。

Objective

To systematacially evaluate the efficacy of exosomes derived from mesenchymal stem cells in the treatment of diabetic kidney disease of animals.

Methods

Relevant articles in the Embase and PubMed databases were retrieved on mesenchymal stem cells-derived exosomes in the treatment of diabetic kidney disease of mice. The retrieval time was from the establishment of the databases until November 25, 2022. SYRCLE′s risk of bias tool was used to evaluate the risk of bias of the animal studies. Meta-analysis was performed by means of the RevMan5.4 software from the Cochrane Collaboration network.

Results

A total of 4 randomized controlled animal experiments were included. There were altogether no less than 98 mice, with no less than 33 mice in the exosome treatment group, 32 mice in the blank control group, and no less than 33 mice in the animal model control group. The results of meta-analysis showed that the blood urea nitrogen level (SMD=-1.97, 95%CI: -3.56 to -0.39, P=0.01) and blood glucose level (SMD=-1.98, 95%CI: -17.45 to -2.22, P=0.002) decreased significantly, while the changes of body weight (SMD=-1.47, 95%CI: -0.21 to 3.16, P=0.09), urinary creatinine (SMD=-1.34, 95%CI: -7.51 to 4.83, P=0.67), and 24 h urinary albumin (SMD=-3.29, 95%CI: -8.40 to -1.82, P=0.21) were of no significant difference after the treatment with exosomes derived from mesenchymal stem cells in the mice diabetic nephropathy animals.

Conclusions

Exosomes derived from mesenchymal stem cells had certain efficacy in the treatment of diabetic kidney disease of animals, which still need to be further studied and verified.

表1 检索策略的PICOS原则
图1 文献检索流程图
表2 纳入文献基本特征
表3 纳入文献偏倚风险评价表SYRCLE动物实验风险评估量表
图2 外泌体治疗组与动物模型对照组糖尿病肾病小鼠体重变化的Meta分析
图3 空白对照组与外泌体治疗组小鼠体重变化的Meta分析
图4 外泌体治疗组与动物模型对照组小鼠尿肌酐水平的Meta分析
图5 空白对照组与外泌体治疗组小鼠尿肌酐水平的Meta分析
图6 外泌体治疗组与动物模型对照组小鼠尿素氮水平的Meta分析
图7 空白对照组与外泌体治疗组小鼠尿素氮水平的Meta分析
图8 外泌体治疗组与动物模型对照组小鼠血糖水平的Meta分析
图9 空白对照组与外泌体治疗组小鼠血糖水平的Meta分析
图10 外泌体治疗组与动物模型对照组DN小鼠24小时尿白蛋白水平的Meta分析
图11 空白对照组与外泌体治疗组小鼠24小时尿白蛋白水平的Meta分析
图12 血糖所纳入文献的结局指标漏斗图
[1]
Bell S, Fletcher EH, Brady I, et al. End-stage renal disease and survival in people with diabetes: a national database linkage study [J]. QJM, 2015, 108(2): 127-134.
[2]
Heerspink HJL, Parving HH, Andress DL, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial [J]. Lancet, 2019, 393(10184): 1937-1947.
[3]
National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 update [J]. Am J Kidney Dis, 2012, 60(5): 850-886.
[4]
American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2020 [J]. Diabetes Care, 2020, 43(Suppl 1): S14-S31.
[5]
Doshi SM, Friedman AN. Diagnosis and management of type 2 diabetic kidney disease [J]. Clin J Am Soc Nephrol, 2017, 12(8): 1366-1373.
[6]
Fried LF, Emanuele N, Zhang JH, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy [J]. N Engl J Med, 2013, 369(20): 1892-903.
[7]
Orbay H, Tobita M, Mizuno H. Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications [J]. Stem Cells Int, 2012, 2012: 461718.
[8]
Venkat P, Shen Y, Chopp M, et al. Cell-based and pharmacological neurorestorative therapies for ischemic stroke [J]. Neuropharmacology, 2018, 134(Pt B): 310-322.
[9]
Mennan C, Brown S, McCarthy H, et al. Mesenchymal stromal cells derived from whole human umbilical cord exhibit similar properties to those derived from Wharton′s jelly and bone marrow [J]. FEBS Open Bio, 2016, 6(11): 1054-1066.
[10]
Peired AJ, Sisti A, Romagnani P. Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence [J]. Stem Cells Int, 2016, 2016: 4798639.
[11]
Zhang Q, Fu L, Liang Y, et al. Exosomes originating from MSCs stimulated with TGF-β and IFN-γ promote Treg differentiation [J]. J Cell Physiol, 2018, 233(9): 6832-6840.
[12]
Liu H, Liang Z, Wang F, et al. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism [J]. JCI Insight, 2019, 4(24): e131273.
[13]
Baharlooi H, Azimi M, Salehi Z, et al. Mesenchymal stem cell-derived exosomes: a promising therapeutic ace card to address autoimmune diseases [J]. Int J Stem Cells, 2020, 13(1): 13-23.
[14]
Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy [J]. Stem Cells, 2017, 35(4): 851-858.
[15]
Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming [J]. Nat Med, 2001, 7(3): 297-303.
[16]
André F, Schartz NE, Chaput N, et al. Tumor-derived exosomes: a new source of tumor rejection antigens [J]. Vaccine, 2002, 20(Suppl 4): A28-A31.
[17]
Romagnoli GG, Zelante BB, Toniolo PA, et al. Dendritic cell-derived exosomes may be a tool for cancer immunotherapy by converting tumor cells into immunogenic targets [J]. Front Immunol, 2015, 5: 692.
[18]
Tang XJ, Sun XY, Huang KM, et al. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy [J]. Oncotarget, 2015, 6(42): 44179-44190.
[19]
Lu J, Wu J, Tian J, et al. Role of T cell-derived exosomes in immunoregulation [J]. Immunol Res, 2018, 66(3): 313-322.
[20]
Liu Y, Lou G, Li A, et al. AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages [J]. EBioMedicine, 2018, 36: 140-150.
[21]
Wu Y, Li J, Yuan R, et al. Bone marrow mesenchymal stem cell-derived exosomes alleviate hyperoxia-induced lung injury via the manipulation of microRNA-425 [J]. Arch Biochem Biophys, 2021, 697: 108712.
[22]
Li Z, Liu F, He X, et al. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia [J]. Int Immunopharmacol, 2019, 67: 268-280.
[23]
Hassanzadeh A, Rahman HS, Markov A, et al. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities [J]. Stem Cell Res Ther, 2021, 12(1): 297.
[24]
Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization [J]. J Neuroinflammation, 2020, 17(1): 47.
[25]
Soundara Rajan T, Giacoppo S, Diomede F, et al. Human periodontal ligament stem cells secretome from multiple sclerosis patients suppresses NALP3 inflammasome activation in experimental autoimmune encephalomyelitis [J]. Int J Immunopathol Pharmacol, 2017, 30(3): 238-252.
[26]
Moghadasi S, Elveny M, Rahman HS, et al. A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine [J]. J Transl Med, 2021, 19(1): 302.
[27]
Hooijmans CR, Rovers MM, de Vries RB, et al. SYRCLE′s risk of bias tool for animal studies [J]. BMC Med Res Methodol, 2014, 14: 43.
[28]
Wang S, Bao L, Fu W, et al. Protective effect of exosomes derived from bone marrow mesenchymal stem cells on rats with diabetic nephropathy and its possible mechanism [J]. Am J Transl Res, 2021, 13(6): 6423-6430.
[29]
Nagaishi K, Mizue Y, Chikenji T, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes [J]. Sci Rep, 2016, 6: 34842.
[30]
Li H, Rong P, Ma X, et al. Mouse umbilical cord mesenchymal stem cell paracrine alleviates renal fibrosis in diabetic nephropathy by reducing myofibroblast transdifferentiation and cell proliferation and upregulating MMPs in mesangial cells [J]. J Diabetes Res, 2020, 2020: 3847171.
[31]
Duan YR, Chen BP, Chen F, et al. Exosomal microRNA-16-5p from human urine-derived stem cells ameliorates diabetic nephropathy through protection of podocyte [J]. J Cell Mol Med, 2021, 25(23): 10798-10813.
[32]
Fineberg D, Jandeleit-Dahm KA, Cooper ME. Diabetic nephropathy: diagnosis and treatment [J]. Nat Rev Endocrinol, 2013, 9(12): 713-723.
[33]
Sierra-Mondragon E, Molina-Jijon E, Namorado-Tonix C, et al. All-trans retinoic acid ameliorates inflammatory response mediated by TLR4/NF-κB during initiation of diabetic nephropathy [J]. J Nutr Biochem, 2018, 60: 47-60.
[34]
Arora MK, Singh UK. Oxidative stress: meeting multiple targets in pathogenesis of diabetic nephropathy [J]. Curr Drug Targets, 2014, 15(5): 531-538.
[35]
Lagies S, Pichler R, Bork T, et al. Impact of diabetic stress conditions on renal cell metabolome [J]. Cells, 2019, 8(10): 1141-1141.
[36]
Chawla D, Bansal S, Banerjee BD, et al. Role of advanced glycation end product (AGE)-induced receptor (RAGE) expression in diabetic vascular complications [J]. Microvasc Res, 2014, 95: 1-6.
[37]
Jiang W, Li Z, Zhao W, et al. Breviscapine attenuated contrast medium-induced nephropathy via PKC/Akt/MAPK signalling in diabetic mice [J]. Am J Transl Res, 2016, 8(2): 329-341.
[38]
陈辛玲,王生兰. 细胞自噬过程、通路、调控及其与肺动脉高压的多重相关性[J].中国组织工程研究2021, 25(2): 311-316.
[39]
郭园园. AGEs通过诱导巨噬细胞自噬影响糖尿病创面愈合的机制研究[D]. 上海:上海交通大学,2016.
[40]
Prasad A, Lane JR, Tsimikas S, et al. Plasma levels of advanced glycation end products are related to the clinical presentation and angiographic severity of symptomatic lower extremity peripheral arterial disease [J]. Int J Angiol, 2016, 25(1): 44-53.
[41]
Lenoir O, Jasiek M, Hénique C, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis [J]. Autophagy, 2015, 11(7): 1130-1145.
[42]
Cui X, Zhu L, Zhai R, et al. Mesenchymal stem cell-derived exosomes: a promising vector in treatment for diabetes and its microvascular complications [J]. Am J Transl Res, 2021, 13(5): 3942-3953.
[1] 诸佳玮, 陈强, 王辉阳, 蒋天安. 双极射频活检针在肝粗针活检止血的研发与初步应用[J]. 中华医学超声杂志(电子版), 2024, 21(01): 69-74.
[2] 欧梁, 齐麒, 胡伟伟, 卢敏, 黄彦昌, 黄维琛, 匡建军. 股骨颈动力交叉钉系统与其它内固定治疗股骨颈骨折对比[J]. 中华关节外科杂志(电子版), 2024, 18(01): 92-105.
[3] 岳伟岗, 蒋由飞, 尹瑞元, 吴雨晨, 曾丽, 田金徽. 经鼻高流量氧疗对急性低氧性呼吸衰竭患者住院病死率的累积Meta分析[J]. 中华危重症医学杂志(电子版), 2024, 17(01): 39-44.
[4] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[5] 邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明. TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 82-89.
[6] 刘蕊, 李乐, 陈金明, 李鑫. 急性胆管炎严重程度与血清标志物相关性的Meta分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 176-181.
[7] 张天献, 吕云福, 郑进方. LC+LCBDE与ERCP/EST+LC治疗胆囊结石合并胆总管结石效果Meta分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 45-50.
[8] 张益帆, 耿晓东, 冀雨薇, 张可颖, 林淑芃, 蔡广研, 陈香美, 洪权. 富亮氨酸α-2糖蛋白1增强间充质干细胞对急性肾损伤的疗效研究[J]. 中华肾病研究电子杂志, 2024, 13(01): 16-25.
[9] 杨洁, 王红叶, 张蕊. 低温透析模式预防透析中低血压的效果Meta分析[J]. 中华肾病研究电子杂志, 2023, 12(06): 314-322.
[10] 蒲丹, 龙煊, 周玉龙, 李甘霖. 血清外泌体miR-224对结直肠癌肝转移患者射频消融治疗后复发的预测价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 45-52.
[11] 王吉, 张颖, 顾雪, 杨朋磊, 陈齐红. 间充质干细胞微泡对ARDS肺纤维化影响的实验研究[J]. 中华临床医师杂志(电子版), 2024, 18(01): 72-78.
[12] 张可, 闫琳琳, 王鹏飞, 章秀林, 赵帆, 胡守奎. 外泌体环状RNA在肿瘤免疫和癌症免疫治疗中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1102-1108.
[13] 王勇, 王丽. 导管接触性溶栓治疗下肢深静脉血栓安全性和有效性的系统评价再评价[J]. 中华介入放射学电子杂志, 2024, 12(01): 58-63.
[14] 陈立如, 李志刚, 李春光. 一个标准的动物肺叶切除模型——猪肺的基本解剖[J]. 中华胸部外科电子杂志, 2024, 11(01): 16-22.
[15] 王海珍, 马永明, 姚可盈. 尿激酶治疗结核性包裹性胸腔积液疗效的系统评价与荟萃分析[J]. 中华胸部外科电子杂志, 2024, 11(01): 53-61.
阅读次数
全文


摘要