切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2025, Vol. 14 ›› Issue (01) : 18 -25. doi: 10.3877/cma.j.issn.2095-3216.2025.01.004

论著

三种急性肾脏病小鼠模型的建立及肾脏功能和病理比较
李孟坤1,2, 张雅宾2, 敖强国2, 何许巍2, 刘洋2, 陈泓宇2, 程庆砾2,()   
  1. 1. 100853 北京,解放军医学院
    2. 100853北京,解放军总医院第二医学中心肾脏病科
  • 收稿日期:2024-10-28 出版日期:2025-02-28
  • 通信作者: 程庆砾
  • 基金资助:
    国家自然科学基金面上项目(82170684)青年扶持基金(22QNFC087)

Establishment of three acute kidney disease mouse models and comparisons of their renal function and pathology

Mengkun Li1,2, Yabin Zhang2, Qiangguo Ao2, Xuwei He2, Yang Liu2, Hongyu Chen2, Qingli Cheng2,()   

  1. 1. Chinese PLA Medical College, Second Medical Center of Chinese PLA General Hospital; Beijing 100853, China
    2. Department of Nephrology, Second Medical Center of Chinese PLA General Hospital; Beijing 100853, China
  • Received:2024-10-28 Published:2025-02-28
  • Corresponding author: Qingli Cheng
引用本文:

李孟坤, 张雅宾, 敖强国, 何许巍, 刘洋, 陈泓宇, 程庆砾. 三种急性肾脏病小鼠模型的建立及肾脏功能和病理比较[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 18-25.

Mengkun Li, Yabin Zhang, Qiangguo Ao, Xuwei He, Yang Liu, Hongyu Chen, Qingli Cheng. Establishment of three acute kidney disease mouse models and comparisons of their renal function and pathology[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2025, 14(01): 18-25.

目的

建立并比较3 种急性肾脏病(AKD)动物模型,为研究AKD 病理生理机制提供基础研究证据。

方法

选取6~8 周健康雄性C57BL/6J 小鼠90 只,按照建立3 种AKD 模型,各分为模型组和对照组(15 只/组):叶酸模型组(给予0.5%叶酸250 mg/kg 腹腔注射)、叶酸对照组(等量0.3 M 碳酸氢钠腹腔注射);单侧输尿管梗阻(UUO)模型组(行单侧输尿管结扎)、UUO 对照组(仅游离输尿管);单侧缺血再灌注(UIR)模型组(钳夹单侧肾蒂30 min)、UIR 对照组(仅游离单侧肾蒂)。建模后2 d、8 d 和14 d 分别取材,检测血清肌酐、血尿素氮、蛋白尿水平,观测肾组织病理并评估肾损伤及胶原沉积。 Western 印迹检测纤维化相关的波形蛋白和α-平滑肌肌动蛋白表达;RT-qPCR 检测肾组织的肾损伤分子(KIM-1)及炎症因子(TNF-α、IL-1β、IL-8、IFN-γ)mRNA 表达。

结果

叶酸模型组在建模后8 d 时血清肌酐和血尿素氮明显升高(P 均<0.05),在建模后2 d 时KIM-1 表达高于其他两个模型组。 UUO 模型组在建模后8 d 时KIM-1 表达则高于其他两个模型组(P 均<0.05)。 3 个模型组的肾小管损伤分数和胶原沉积呈现时间依赖性增多,且均多于各自对照组。 在建模后14 d 时,UUO 模型组肾小管损伤分数、胶原沉积、波形蛋白和α-平滑肌肌动蛋白表达均高于另外两个模型组(P 均<0.05)。 在建模后8 d 时,3 个模型组的IL-8、IL-1β、TNF-α 和IFN-γ mRNA 表达均高于其对照组(P 均<0.05),而UUO 模型组的这些炎症因子表达高于另外两个模型组(P<0.05)。

结论

小鼠AKD 的叶酸模型、UUO 模型和UIR 模型均在建模操作后8 d 建成,其中UUO 模型在疾病进展中的肾纤维化更为严重。

Objective

To establish and compare three animal models of acute kidney disease(AKD) to provide basic research evidence for investigating the pathophysiological mechanisms of AKD.

Methods

Ninety healthy male C57BL/6J mice aged 6-8 weeks were selected, and divided into model groups and control groups (15 mice/group) to establish three AKD models: folic acid model group (given intraperitoneal injection of 0.5% folic acid at 250 mg/kg), folic acid control group (given intraperitoneal injection of the same amount of 0.3 M sodium bicarbonate), unilateral ureteral obstruction (UUO) model group (given unilateral ureteral obstruction), UUO control group (given sham operation), unilateral ischemia-reperfusion (UIR) model group (given clamping of unilateral renal pedicle for 30 minutes), and UIR control group (given sham operation).On day 2, day 8, and day 14 after the modeling, samples were collected to measure serum creatinine, blood urea nitrogen, and proteinuria levels.Renal tissue pathology was observed, and renal injury and collagen deposition were assessed.Western blotting was used to detect the expressions of fibrosis-related proteins such as vimentin and α-smooth muscle actin.RT-qPCR was used to detect renal mRNA expressions of kidney injury molecule-1 (KIM-1) and inflammatory factors including TNF-α, IL-1β, IL-8, and IFN-γ).

Results

In the folic acid model group, serum creatinine and blood urea nitrogen significantly increased at day 8 after the modeling (both P<0.05), while the KIM-1 expression was higher than those in the other two model groups at day 2 after the modelings.At day 8 after the modelings, the expression of KIM-1 in the UUO model group was higher than those in the other two model groups (all P<0.05).The tubular injury scores and collagen deposition in the three model groups showed a time-dependent increase, and were all higher than those in their respective control groups.At day 14 after modeling, the UUO model group showed higher tubular injury scores and collagen deposition, as well as higher expressions of vimentin and α-smooth muscle actin than the other two model groups (all P<0.05).At day 8 after the modelings, the mRNA expressions of IL-8, IL-1β, TNF-α, and IFN-γ in the three model groups were all higher than those in their respective control groups (all P<0.05), while the expressions of these inflammatory factors in the UUO model group were higher than those in the other two model groups (all P<0.05).

Conclusion

The folic acid model, UUO model, and UIR model of mice AKD were all established at day8after the modeling operations, among which the renal fibrosis during the disease progression was more severe in the UUO model.

表1 小鼠引物序列
图1 3 种肾损伤模型小鼠活动评分 注:Sham:对照组;FA:腹腔注射叶酸组;UUO:单侧输尿管梗阻组;UIR:单侧缺血再灌注组;与对照组相比,aP<0.05;与建模操作后2 d 相比,bP<0.05
表2 实验小鼠活动评分表
图2 3 种急性肾脏病模型建模操作后8 d 实验小鼠肾功能情况 注:Sham:对照组;FA:叶酸模型组;UUO:单侧输尿管梗阻组;UIR:单侧缺血再灌注组;A:建模操作后8 d 血清肌酐比较;B:建模操作后8 d 血清尿素氮比较;C:建模操作后8 d 尿蛋白水平;与对照组相比,aP<0.05;与FA 组相比,bP<0.05;与UUO 组相比,cP<0.05
图3 3 种急性肾脏病模型建模操作后2 d 和8 d 肾损伤分子-1 水平比较 注: Sham:对照组;FA:叶酸模型组;UUO:单侧输尿管梗阻组;UIR:单侧缺血再灌注组;KIM-1:肾损伤分子-1;A:建模操作后2 d 肾组织KIM-1 转录水平比较;B:建模操作后8 d 肾脏组织KIM-1 转录水平比较;与对照组相比,aP<0.05;与FA 组相比,bP<0.05;与UUO 组相比,cP<0.05
图4 各组小鼠肾脏病理组织学变化及半定量分析 注:FA:叶酸模型组;UUO:单侧输尿管梗阻组;UIR:单侧缺血再灌注组;A:各组小鼠肾组织PAS 染色(×100);B:急性肾小管坏死评分;C:各组肾组织Masson 染色(×100);D:肾组织Masson 染色阳性面积定量分析;与对照组相比,aP<0.05;与建模操作后2 d 相比,bP<0.05;与建模操作后8 d 相比,cP<0.05
图5 各组小鼠在建模操作后14 d 肾组织中波形蛋白、α-平滑肌肌动蛋白表达水平比较 注:α-SMA:α-平滑肌肌动蛋白;Vimentin:波形蛋白;β-actin:β-肌动蛋白(作为内参照);Sham:对照组;FA:叶酸模型组;UUO:单侧输尿管梗阻组;UIR:单侧缺血再灌注组;A:蛋白印记检测各组在建模操作后14 d 肾组织中波形蛋白、α-SMA 蛋白的表达;B:波形蛋白的蛋白相对表达水平;C:α-SMA 蛋白相对表达水平;与对照组相比,aP<0.05;与FA 组相比,bP<0.05;与UUO 组相比,cP<0.05
图6 各组小鼠建模操作后8 d 肾组织多种炎症因子mRNA 转录水平比较 注:Sham:对照组;FA:叶酸模型组;UUO:单侧输尿管梗阻组;UIR:单侧缺血再灌注组;IFN-γ:干扰素-γ;IL-8:白细胞介素-8;IL-1β:白细胞介素-1β;TNF-α:肿瘤坏死因子-α;A:IFN-γ 在建模操作后8 d 的各组小鼠肾组织中的mRNA 表达水平;B:IL-8 在建模操作后8 d 的各组小鼠左侧肾脏中的mRNA 表达水平;C:TNF-α 在建模操作后8 d 的各组小鼠肾组织中的mRNA 表达水平;D:IL-1β 在建模操作后8 d 的各组小鼠肾组织中的mRNA 相对表达水平;与对照组相比较,aP<0.05;与FA 组相比较,bP<0.05;与UUO 组相比较,cP<0.05
[1]
Kung CW, Chou YH.Acute kidney disease: an overview of the epidemiology, pathophysiology, and management [J].Kidney Res Clin Pract, 2023, 42(6): 686-699.
[2]
Ostermann M, Bellomo R, Burdmann EA, et al.Controversies in acute kidney injury: conclusions from a kidney disease:improving global outcomes (KDIGO) conference [J].Kidney Int, 2020, 98(2): 294-309.
[3]
Levey AS, Eckardt KU, Dorman NM, et al.Nomenclature for kidney function and disease: report of a kidney disease:improving global outcomes (KDIGO) consensus conference [J].Kidney Int, 2020, 97(6): 1117-1129.
[4]
Levey AS.Defining AKD: the spectrum of AKI, AKD, and CKD[J].Nephron, 2022, 146(3): 302-305.
[5]
Fu Y, Xiang Y, Wei Q, et al.Rodent models of AKI and AKICKD transition: an update in 2024 [J].Am J Physiol Renal Physiol, 2024, 326(4): F563-F583.
[6]
Martínez KE, Aparicio TO, Tapia E, et al.Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments [J].Biomolecules, 2019, 9(4): 141.
[7]
Fu ZJ, Wang ZY, Xu L, et al.HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury [J].Redox Biol, 2020, 36: 101671.
[8]
Lameire NH, Levin A, Kellum JA, et al.Harmonizing acute and chronic kidney disease definition and classification: report of a kidney disease: improving global outcomes (KDIGO) consensus conference [J].Kidney Int, 2021, 100(3): 516-526.
[9]
张一绚, 韩冰, 刘超, 等.年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J/OL].中华肾病研究电子杂志, 2024, 13(3): 129-133.
[10]
Levey AS, De Jong PE, Coresh J et al.The definition,classification, and prognosis of chronic kidney disease: a KDIGO controversies conference report [J].Kidney Int, 2011, 80(1),17-28.
[11]
Yeh TH, Tu KC, Wang HY, et al.From acute to chronic:unraveling the pathophysiological mechanisms of the progression from acute kidney injury to acute kidney disease to chronic kidney disease [J].Int J Mol Sci, 2024, 25(3): 1755.
[12]
Cappuccilli M, Bergamini C, Giacomelli FA, et al.Vitamin B supplementation and nutritional intake of methyl donors in patients with chronic kidney disease: a critical review of the impact on epigenetic machinery [J].Nutrients, 2020, 12(5):1234.
[13]
Rondanelli M, Tartara A, Fossari F, et al.Adequate intake and supplementation of B vitamins, in particular folic acid, can play a protective role in bone health [J].Curr Aging Sci, 2022, 15(2): 110-120.
[14]
Hu S, Gao Y, Gao RF, et al.The selective STING inhibitor H-151 preserves myocardial function and ameliorates cardiac fibrosis in murine myocardial infarction [J].Int Immunopharmacol,2022, 107: 108658.
[15]
Fu Y, Tang C, Cai J, et al.Rodent models of AKI-CKD transition [J].Am J Physiol Renal Physiol, 2018, 315(4):F1098-F1106.
[16]
Yu Z, Zhou Y, Zhang Y, et al.Cell profiling of acute kidney injury to chronic kidney disease reveals novel oxidative stress characteristics in the failed repair of proximal tubule cells [J].Int J Mol Sci, 2023, 24(14): 11617.
[17]
Zhu M, He J, Xu Y, et al.AMPK activation coupling SENP1-Sirt3 axis protects against acute kidney injury [J].Mol Ther,2023, 31(10): 3052-3066.
[18]
Kong W, Fu J, Liu N, et al.Nrf2 deficiency promotes the progression from acute tubular damage to chronic renal fibrosis following unilateral ureteral obstruction [ J].Nephrol Dial Transplant, 2018, 33(5): 771-783.
[19]
Chen Y, Li Z, Zhang H, et al.Mitochondrial metabolism and targeted treatment strategies in ischemic-induced acute kidney injury [J].Cell Death Discovery, 2024, 10(1): 69.
[20]
宫铭, 刘冉, 刘娇娜, 等.双侧肾脏缺血再灌注所致急性肾损伤小鼠行为及情绪障碍的研究[J/OL].中华肾病研究电子杂志, 2021, 10(2): 70-74.
[21]
梁爽.老年住院患者慢性肾脏病疾病特点及预后相关危险因素研究[D].北京:中国人民解放军医学院, 2018.
[22]
Nørregaard R, Mutsaers HAM, Frøkiær J, et al.Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis [J].Physiol Rev, 2023, 103(4): 2827-2872.
[23]
Shiva N, Sharma N, Kulkarni YA, et al.Renal ischemia/reperfusion injury: an insight on in vitro and in vivo models [J].Life Sci, 2020, 256: 117860.
[24]
杨亚奇, 刘云, 刘岩.全身免疫炎症指数在慢性肾脏病患者中的研究进展[J].中国血液净化, 2024, 23(7): 538-541.
[25]
Yan LJ.Folic acid-induced animal model of kidney disease [J].Anim Models Exp Med, 2021, 4(4): 329-342.
[26]
Mack M.Inflammation and fibrosis [J].Matrix Biol, 2018, 68-69: 106-121.
[27]
Kadatane SP, Satariano M, Massey M, et al.The role of inflammation in CKD [J].Cells, 2023, 12(12): 1581.
[1] 金雪梅, 安玮, 郭莎, 阿拉发提·何亚斯丁, 加娜尔·吐根别克, 姚志涛. 年轻家兔髁突吸收动物模型的建立与研究[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(01): 16-24.
[2] 中华医学会器官移植学分会. 肝脏体外机械灌注临床应用指南[J/OL]. 中华移植杂志(电子版), 2024, 18(06): 334-345.
[3] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[4] 王雪玲, 曹欢, 顾劲扬. 肠道菌群在器官缺血再灌注损伤中的作用及机制研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 247-250.
[5] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[6] 唐瑞政, 李舒珏, 吴文起. 果蝇模型在肾结石研究中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 214-218.
[7] 张子旭, 郑俊炯, 罗云, 林天歆. 腹腔镜肾部分切除术离体猪肾培训模型的构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 277-283.
[8] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[9] 袁佳莹, 范小彧, 费博, 喻春钊. 结直肠癌肝转移研究模型的现状及展望[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(01): 40-46.
[10] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[11] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[12] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[13] 梁铭垚, 袁健瑜, 关雨霏, 左思程, 阳新明, 陈巧燕. 多壳扩散磁共振成像在缺血性卒中模型的应用[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 362-368.
[14] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
[15] 赵伟伟, 赵玉华, 刘小璇. 西藏地区亚甲基四氢叶酸还原酶C677T多态性及其与脑微出血的相关性[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 473-478.
阅读次数
全文


摘要