切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2025, Vol. 14 ›› Issue (06) : 325 -330. doi: 10.3877/cma.j.issn.2095-3216.2025.06.004

综述

自体动静脉内瘘功能障碍的血流动力学机制及干预策略研究进展
田明威, 赵小淋, 任琴琴, 王芳, 李青霖, 王远大, 丁潇楠, 朱晗玉(), 张冬()   
  1. 100853 北京,解放军总医院第一医学中心肾脏病医学部、肾脏疾病全国重点实验室、国家慢性肾病临床医学研究中心、重症肾脏疾病器械与中西医药物研发北京市重点实验室、数智中医泛血管疾病防治北京市重点实验室、国家中医药管理局高水平中医药重点学科(zyyzdxk-2023310)
  • 收稿日期:2025-04-17 出版日期:2025-12-28
  • 通信作者: 朱晗玉, 张冬
  • 基金资助:
    国家自然科学基金(62271506)

Research progress on hemodynamic mechanisms and intervention strategies for autogenous arteriovenous fistula dysfunction

Mingwei Tian, Xiaolin Zhao, Qinqin Ren, Fang Wang, Qinglin Li, Yuanda Wang, Xiaonan Ding, Hanyu Zhu(), Dong Zhang()   

  1. Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing 100853, China
  • Received:2025-04-17 Published:2025-12-28
  • Corresponding author: Hanyu Zhu, Dong Zhang
引用本文:

田明威, 赵小淋, 任琴琴, 王芳, 李青霖, 王远大, 丁潇楠, 朱晗玉, 张冬. 自体动静脉内瘘功能障碍的血流动力学机制及干预策略研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(06): 325-330.

Mingwei Tian, Xiaolin Zhao, Qinqin Ren, Fang Wang, Qinglin Li, Yuanda Wang, Xiaonan Ding, Hanyu Zhu, Dong Zhang. Research progress on hemodynamic mechanisms and intervention strategies for autogenous arteriovenous fistula dysfunction[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2025, 14(06): 325-330.

自体动静脉内瘘(autologous arteriovenous fistula,AVF)是血液透析的首选永久性血管通路,但是约30%~50%的AVF会因血栓形成、血管内膜增生及血管异常重塑等病理机制而发生功能障碍。研究证实,血流动力学异常是AVF失功的核心驱动因素。AVF术后局部血流动力学的改变,可通过促进新生内膜增生、诱导内皮细胞表型转化及驱动血管壁细胞外基质重塑机制导致AVF成熟失败。改进手术技术及采用多阶段综合干预策略可提高AVF成熟率;结合血流动力学模拟技术进行个体化设计是未来的重要方向。本文综述了AVF功能障碍的血流动力学机制以及提高AVF成熟率的方法,旨在为开发延长AVF使用寿命的靶向干预策略提供理论依据。

The autologous arteriovenous fistula (AVF) is the preferred permanent vascular access for hemodialysis. However, approximately 30% to 50% of AVFs may develop dysfunction due to pathological mechanisms such as thrombosis, vascular intimal hyperplasia, and abnormal vascular remodeling. Studies have confirmed that hemodynamic abnormalities are the core driving factors behind AVF dysfunction. Following AVF surgery, local hemodynamic changes can lead to AVF maturation failure by promoting neointimal hyperplasia, inducing phenotypic transformation of endothelial cells, and driving extracellular matrix remodeling in the vascular wall. Improving surgical techniques and adopting multi-stage comprehensive intervention strategies can enhance the AVF maturation rate. And individualized design based on hemodynamic simulation technology represents an important future direction. This article provided an overview of the hemodynamic mechanisms underlying AVF dysfunction and methods to enhance the maturation rate of AVF, aiming to provide a theoretical basis for developing targeted intervention strategies to extend the service life of AVF.

图1 低壁面剪切应力在支架内再狭窄过程中的作用机制[13]
[1]
Yan R, Song A, Zhang C. The pathological mechanisms and therapeutic molecular targets in arteriovenous fistula dysfunction [J]. Int J Mol Sci, 2024, 25(17): 9519.
[2]
Barcena AJR, Perez JVD, Liu O, et al. Localized perivascular therapeutic approaches to inhibit venous neointimal hyperplasia in arteriovenous fistula access for hemodialysis use [J]. Biomolecules, 2022, 12(10): 1367.
[3]
Cheng CK, Huang Y. Vascular endothelium: the interface for multiplex signal transduction [J]. J Mol Cell Cardiol, 2024, 195: 97-102.
[4]
李璐,胥海洋,孙雨蒙,等. 颈动脉斑块血流动力学成像技术及新进展[J]. 磁共振成像2024, 15(4): 214-218.
[5]
Liu X, Song P, Gao Q, et al. Impact on hemodynamics in carotid arteries with carotid webs at different locations: a numerical study integrating thrombus growth model [J]. Comput Methods Programs Biomed, 2024, 243: 107926.
[6]
Purroy F, Sánchez E, Lecube A, et al. Prevalence and predictors of cerebral microangiopathy determined by pulsatility index in an asymptomatic population from the ILERVAS project [J]. Front Neurol, 2021, 12: 785640.
[7]
Ng JH, Yang W, Dember LM, et al. Performance characteristics of candidate criteria for hemodialysis [J]. Clin J Am Soc Nephrol, 2023, 18(10): 1321-1332.
[8]
Yun SS, Mok S, Park SC, et al. Efficacy of blood flow measurement using intraoperative color flow Doppler ultrasound as a predictor of autologous arteriovenous fistula maturation [J]. Ther Apher Dial, 2023, 27(1): 50-58.
[9]
Bai H, Sadaghianloo N, Gorecka J, et al. Artery to vein configuration of arteriovenous fistula improves hemodynamics to increase maturation and patency [J]. Sci Transl Med, 2020, 12(557): eaax7613.
[10]
Somarathna M, Hwang PT, Millican RC, et al. Nitric oxide releasing nanomatrix gel treatment inhibits venous intimal hyperplasia and improves vascular remodeling in a rodent arteriovenous fistula [J]. Biomaterials, 2022, 280: 121254.
[11]
He Y, Shiu YT, Imrey PB, et al. Association of shear stress with subsequent lumen remodeling in hemodialysis arteriovenous fistulas [J]. Clin J Am Soc Nephrol, 2023, 18(1): 72-83.
[12]
Mazzi V, De Nisco G, Hoogendoorn A, et al. Early atherosclerotic changes in coronary Arteries are associated with endothelium shear stress contraction/expansion variability [J]. Ann Biomed Eng, 2021, 49(9): 2606-2621.
[13]
Koskinas KC, Chatzizisis YS, Antoniadis AP, et al. Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation [J]. J Am Coll Cardiol, 2012, 59(15): 1337-1349.
[14]
Tamargo IA, Baek KI, Kim Y, et al. Flow-induced reprogramming of endothelial cells in atherosclerosis [J]. Nat Rev Cardiol, 2023, 20(11): 738-753.
[15]
Harrison GJ, How TV, Poole RJ, et al. Closure technique after carotid endarterectomy influences local hemodynamics [J]. J Vasc Surg, 2014, 60(2): 418-427.
[16]
Ding J, Du Y, Zhao R, et al. Detection of abnormal wall shear stress and oscillatory shear index via ultrasound vector flow imaging as possible indicators for arteriovenous fistula stenosis in hemodialysis [J]. Ultrasound Med Biol, 2023, 49(8): 1830-1836.
[17]
Lok CE, Huber TS, Lee T, et al. KDOQI clinical practice guideline for vascular access: 2019 update [J]. Am J Kidney Dis, 2020, 75(4 Suppl 2): S1-S164.
[18]
王涛,程悦,何朝霞,等. 血液透析患者自体动静脉瘘失功的高危因素分析[J]. 中华危重病急救医学2023, 35(12): 1281-1285.
[19]
Pan X, Phanish MK, Baines DL, et al. High glucose-induced Smad3 linker phosphorylation and CCN2 expression are inhibited by dapagliflozin in a diabetic tubule epithelial cell model [J]. Biosci Rep, 2021, 41(6): BSR20203947.
[20]
Kato T, Shinohara I, Mifune Y, et al. Intra-articular site-specific distribution of advanced glycation end products in the shoulder of patients with diabetes mellitus having rotator cuff tears [J]. Mol Biol Rep, 2023, 50(12): 10339-10349.
[21]
Gasparin C, Lima HDN, Regueira Filho A, et al. Predictors of arteriovenous fistula maturation in hemodialysis patients: a prospective cohort from an ambulatory surgical center in Joinville, Brazil [J]. J Bras Nefrol, 2023, 45(3): 287-293.
[22]
Ozhan A, Memetoglu ME, Kehlibar T, et al. Transposition of brachiobasilic arteriovenous fistulas: one-stage or two-stage technique and factors affecting the early maturation [J]. Ther Apher Dial, 2021, 25(5): 636-641.
[23]
Kanchanasuttirak P, Pitaksantayothin W, Kanchanasuttirak W. Accuracy of physical examination versus Doppler ultrasonography for determining maturity in postoperative arteriovenous fistula formation [J]. Asian J Surg, 2024, 47(9): 3847-3851.
[24]
Ashraf JV, Al Haj Zen A. Role of vascular smooth muscle cell phenotype switching in arteriogenesis [J]. Int J Mol Sci, 2021, 22(19): 10585.
[25]
Jodko D, Barber T. Fluid-structure interaction in a follow-up study of arterio-venous fistula maturation [J]. Sci Rep, 2024, 14(1): 29654.
[26]
Cai C, Zhao C, Kilari S, et al. Effect of sex differences in treatment response to angioplasty in a murine arteriovenous fistula model [J]. Am J Physiol Renal Physiol, 2020, 318(3): F565-F575.
[27]
Cai C, Kilari S, Singh AK, et al. Differences in transforming growth factor-β1/BMP7 signaling and venous fibrosis contribute to female sex differences in arteriovenous fistulas [J]. J Am Heart Assoc, 2020, 9(16): e017420.
[28]
Jia L, Wang L, Wei F, et al. Effects of caveolin-1-ERK1/2 pathway on endothelial cells and smooth muscle cells under shear stress [J]. Exp Biol Med (Maywood), 2020, 245(1): 21-33.
[29]
DeVallance E, Bowdridge E, Garner K, et al. The alarmin, interleukin-33, increases vascular tone via extracellular signal regulated kinase-mediated Ca2+ sensitization and endothelial nitric oxide synthase inhibition [J]. J Physiol, 2024, 602(22): 6087-6107.
[30]
Liu E, Shi S, Li J, et al. Farrerol maintains the contractile phenotype of VSMCs via inactivating the extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase signaling [J]. Mol Cell Biochem, 2020, 475(1-2): 249-260.
[31]
Blazeski A, Floryan MA, Zhang Y, et al. Engineering microvascular networks using a KLF2 reporter to probe flow-dependent endothelial cell function [J]. Biomaterials, 2024, 311: 122686.
[32]
Lorenz M, Lehmann S, Djordjevic I, et al. Vasodilation of tea polyphenols ex vivo is mediated by hydrogen peroxide under rapid compound decay [J]. Antioxidants (Basel), 2020, 9(5): 390.
[33]
Zeng X, Xue CD, Li YJ, et al. A mathematical model for intracellular NO and ROS dynamics in vascular endothelial cells activated by exercise-induced wall shear stress [J]. Math Biosci, 2023, 359: 109009.
[34]
Arenas GA, Valenzuela JG, Peñaloza E, et al. Transcriptional profiling of human endothelial cells unveils PIEZO1 and mechanosensitive gene regulation by prooxidant and inflammatory inputs [J]. Antioxidants (Basel), 2023, 12(10): 1874.
[35]
Zhou Q, Cheng W, Wang Z, et al. C1q/TNF-related protein-9 is elevated in hypertension and associated with the occurrence of hypertension-related atherogenesis [J]. Cell Biol Int, 2021, 45(5): 989-1000.
[36]
Garcha A, Grande Gutiérrez N. Sensitivity of coronary hemodynamics to vascular structure variations in health and disease [J]. Sci Rep, 2025, 15(1): 3325.
[37]
He Y, Northrup H, Le H, et al. Medical image-based computational fluid dynamics and fluid-structure interaction analysis in vascular diseases [J]. Front Bioeng Biotechnol, 2022, 10: 855791.
[38]
Campinho P, Vilfan A, Vermot J. Blood flow forces in shaping the vascular system: a focus on endothelial cell behavior [J]. Front Physiol, 2020, 11: 552.
[39]
Rai V, Agrawal DK. Transcriptomic analysis identifies differentially expressed genes associated with vascular cuffing and chronic inflammation mediating early thrombosis in arteriovenous fistula [J]. Biomedicines, 2022, 10(2): 433.
[40]
Sadaghianloo N, Declemy S, Jean-Baptiste E, et al. Radial artery deviation and reimplantation inhibits venous juxta-anastomotic stenosis and increases primary patency of radial-cephalic fistulas for hemodialysis [J]. J Vasc Surg, 2016, 64(3): 698-706.e1.
[41]
Gołębiowski T, Kusztal M, Konieczny A, et al. Radial artery deviation and reimplantation (RADAR) to accelerate the maturation of radial-cephalic fistulas for hemodialysis in patients with end-stage renal disease [J]. J Clin Med, 2023, 12(20): 6481.
[42]
韩恩红,梁付桂,左晓文,等. 多普勒超声在血液透析患者自体动静脉内瘘评估中的应用[J/OL]. 中华肾病研究电子杂志2023, 12(1): 44-47.
[43]
Parker MH, Hashemi H, Grant C, et al. A novel technique using long segment patch angioplasty maturation to increase the maturation rate of arteriovenous fistulas [J]. J Vasc Surg, 2021, 74(1): 2302-2336.
[44]
Kim SM, Park PJ, Kim HK. Comparison between radiocephalic and brachiocephalic arteriovenous fistula in octogenarians: A retrospective single center study [J]. J Vasc Access, 2024, 25(3): 849-853.
[45]
Yang CY, Li MC, Lan CW, et al. The anastomotic angle of hemodialysis arteriovenous fistula is associated with flow disturbance at the venous stenosis location on angiography [J]. Front Bioeng Biotechnol, 2020, 8: 846.
[46]
Zhao B, Wang H, Wang Y, et al. Nomogram-based prediction of the risk of AVF maturation: a retrospective study [J]. Front Med (Lausanne), 2024, 11: 1432437.
[47]
Wang B, Rao A, Pappas K, et al. Maturation rates of arteriovenous fistulas using small veins in the era of endovascular interventions [J]. Ann Vasc Surg, 2021, 71: 208-214.
[48]
van de Velde L, Groot Jebbink E, Hagmeijer R, et al. Computational fluid dynamics for the prediction of endograft thrombosis in the superficial femoral artery [J]. J Endovasc Ther, 2023, 30(4): 615-627.
[49]
Belkacemi D, Tahar Abbes M, Al-Rawi M, et al. Intraluminal thrombus characteristics in AAA patients: non-invasive diagnosis using CFD [J]. Bioengineering (Basel), 2023, 10(5): 540.
[50]
Malek S, Eskandari A, Sharbatdar M. Machine learning-based prediction of hemodynamic parameters in left coronary artery bifurcation: a CFD approach [J]. Heliyon, 2025, 11(2): e41973.
[51]
Wu J, Wang P, Zhou L, et al. Hemodynamics derived from computational fluid dynamics based on magnetic resonance angiography is associated with functional outcomes in atherosclerotic middle cerebral artery stenosis [J]. Quant Imaging Med Surg, 2022, 12(1): 688-698.
[52]
Zhou G, Chen Y, Chien C, et al. Deep learning analysis of blood flow sounds to detect arteriovenous fistula stenosis [J]. NPJ Digit Med, 2023, 6(1): 163.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 李秋平, 封志纯. 早产儿动脉导管未闭管理中的困惑与再思考[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(06): 591-597.
[3] 范利杰, 韦雅丽. 右旋氯胺酮与舒芬太尼对腹腔镜疝囊高位结扎术患儿血流动力学及自主恢复的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(02): 214-218.
[4] 刘琳, 徐军, 孙军, 孙晓燕, 屈方方. 全身麻醉复合腹横肌平面阻滞在老年腹股沟疝修补术中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(01): 69-73.
[5] 任阳, 林芳, 姜文娟, 王妮, 杜菲菲, 乔雅馨. 血清可溶性致癌抑制因子-2与肺动脉高压血流动力学参数及预后的相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 609-614.
[6] 刘书馨. 动静脉内瘘狭窄的血流动力学机制及研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 240-240.
[7] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[8] 刘圣均, 程卫, 王璐, 隆云. 休克的血流动力学治疗:从生理机制到临床思维[J/OL]. 中华重症医学电子杂志, 2025, 11(02): 157-162.
[9] 牛菲菲, 郑全乐, 张亭亭, 张同乐, 李学天, 杨文启. 右美托咪定对慢性硬脑膜下血肿手术的效果研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(05): 288-292.
[10] 张群青, 吴娟, 王妍. 肝硬化门静脉高压症患者肝脏血流动力学指标与门静脉压力梯度的相关性[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 616-620.
[11] 孙承毅, 彭林, 钟凤珍, 褚成静. 不同剂量艾司氯胺酮复合舒芬太尼在腹腔镜胃癌根治术中的麻醉效果观察[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 524-528.
[12] 王俊香, 刘洁, 井春艳. 彩色多普勒超声肝门血流在肝硬化食管胃底静脉曲张患者出血风险的评估价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 492-498.
[13] 谢浩文, 丁建英, 刘小霞, 冯毅, 姚婧. 椎旁神经阻滞对微创胃切除肥胖患者术中血流、术后应激及康复质量的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 569-573.
[14] 杜凌云, 戚猛, 缪佳铭. HFpEF患者胸阻抗法血流动力学监测及其临床意义[J/OL]. 中华卫生应急电子杂志, 2025, 11(05): 257-262.
[15] 杨超, 张少斌. CT增强扫描评价危重症患者容量反应性的临床意义[J/OL]. 中华卫生应急电子杂志, 2025, 11(05): 263-268.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?