[1] |
Ogurtsova K, Da Rocha Fernandes JD, Huang Y, et al. Global estimates for the prevalence of diabetes for 2015 and 2040 [J]. Diabetes Res Clin Pract, 2017, 128:40-50.
|
[2] |
Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China [J]. N Engl J Med, 2010, 362(12):1090-1101.
|
[3] |
Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults [J]. JAMA, 2013, 310(9):948-959.
|
[4] |
Macisaac RJ, Ekinci EI, Jerums G. Markers of and risk factors for the development and progression of diabetic kidney disease [J]. Am J Kidney Dis, 2014, 63(Suppl 2):S39-S62.
|
[5] |
Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China [J]. N Engl J Med, 2016, 375(9):905-906.
|
[6] |
Perkins BA, Ficociello LH, Ostrander BE, et al. Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes [J]. J Am Soc Nephrol, 2007, 18(4):1353-1361.
|
[7] |
Perkins BA, Ficociello LH, Roshan B, et al. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria [J]. Kidney Int, 2010, 77(1):57-64.
|
[8] |
Nauta FL, Boertien WE, Bakker SJ, et al. Glomerular and tubular damage markers are elevated in patients with diabetes [J]. Diabetes Care, 2011, 34(4):975-981.
|
[9] |
Hara M, Yamagata K, Tomino Y, et al. Urinary podocalyxin is an early marker for podocyte injury in patients with diabetes: establishment of a highly sensitive ELISA to detect urinary podocalyxin [J]. Diabetologia, 2012, 55(11):2913-2919.
|
[10] |
Nielsen SE, Sugaya T, Tarnow L, et al. Tubular and glomerular injury in diabetes and the impact of ACE inhibition [J]. Diabetes Care, 2009, 32(9):1684-1688.
|
[11] |
Pavkov ME, Weil EJ, Fufaa GD, et al. Tumor necrosis factor receptors 1 and 2 are associated with early glomerular lesions in type 2 diabetes [J]. Kidney Int, 2016, 89(1):226-234.
|
[12] |
Wolkow PP, Niewczas MA, Perkins B, et al. Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics [J]. J Am Soc Nephrol, 2008, 19(4):789-797.
|
[13] |
Mohamed R, Jayakumar C, Chen F, et al. Low-dose Il-17 therapy prevents and reverses diabetic nephropathy, metabolic syndrome, and associated organ fibrosis [J]. J Am Soc Nephrol, 2016, 27(3):745-765.
|
[14] |
Christou GA, Kiortsis DN. The role of adiponectin in renal physiology and development of albuminuria [J]. J Endocrinol, 2014, 221(2):R49-R61.
|
[15] |
Sharma K, Ramachandrarao S, Qiu G, et al. Adiponectin regulates albuminuria and podocyte function in mice [J]. J Clin Invest, 2008, 118(5):1645-1656.
|
[16] |
Von Eynatten M, Liu D, Hock C, et al. Urinary adiponectin excretion: a novel marker for vascular damage in type 2 diabetes [J]. Diabetes, 2009, 58(9):2093-2099.
|
[17] |
Saraheimo M, Forsblom C, Thorn L, et al. Serum adiponectin and progression of diabetic nephropathy in patients with type 1 diabetes [J]. Diabetes Care, 2008, 31(6):1165-1169.
|
[18] |
Panduru NM, Saraheimo M, Forsblom C, et al. Urinary adiponectin is an independent predictor of progression to end-stage renal disease in patients with type 1 diabetes and diabetic nephropathy [J]. Diabetes Care, 2015, 38(5):883-890.
|
[19] |
Hull TD, Agarwal A. Bilirubin: a potential biomarker and therapeutic target for diabetic nephropathy [J]. Diabetes, 2014, 63(8):2613-2616.
|
[20] |
Riphagen IJ, Deetman PE, Bakker SJ, et al. Bilirubin and progression of nephropathy in type 2 diabetes: a post hoc analysis of RENAAL with independent replication in IDNT [J]. Diabetes, 2014, 63(8):2845-2853.
|
[21] |
Mashitani T, Hayashino Y, Okamura S, et al. Correlations between serum bilirubin levels and diabetic nephropathy progression among Japanese type 2 diabetic patients: a prospective cohort study [J]. Diabetes Care, 2014, 37(1):252-258.
|
[22] |
Gohda T, Niewczas MA, Ficociello LH, et al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes [J]. J Am Soc Nephrol, 2012, 23(3):516-524.
|
[23] |
Niewczas MA, Gohda T, Skupien J, et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes [J]. J Am Soc Nephrol, 2012, 23(3):507-515.
|
[24] |
Pavkov ME, Nelson RG, Knowler WC, et al. Elevation of circulating TNF receptors 1 and 2 increases the risk of end-stage renal disease in American Indians with type 2 diabetes [J]. Kidney Int, 2015, 87(4):812-819.
|
[25] |
Coca SG, Nadkarni GN, Huang Y, et al. Plasma biomarkers and kidney function decline in early and established diabetic kidney disease [J]. J Am Soc Nephrol, 2017, 28(9):2786-2793.
|
[26] |
Wong MG, Perkovic V, Woodward M, et al. Circulating bone morphogenetic protein-7 and transforming growth factor-beta1 are better predictors of renal end points in patients with type 2 diabetes mellitus [J]. Kidney Int, 2013, 83(2):278-284.
|
[27] |
Liu JJ, Pek SLT, Ang K, et al. Plasma leucine-rich alpha-2-glycoprotein 1 predicts rapid EGFR decline and albuminuria progression in type 2 diabetes mellitus [J]. J Clin Endocrinol Metab, 2017, 102(10):3683-3691.
|
[28] |
Xu X, Zhu X, Ma M, et al. P66shc: a novel biomarker of tubular oxidative injury in patients with diabetic nephropathy [J]. Sci Rep, 2016, 6:29302.
|
[29] |
Bhensdadia NM, Hunt KJ, Lopes-Virella MF, et al. Urine haptoglobin levels predict early renal functional decline in patients with type 2 diabetes [J]. Kidney Int, 2013, 83(6):1136-1143.
|
[30] |
Betz BB, Jenks SJ, Cronshaw AD, et al. Urinary peptidomics in a rodent model of diabetic nephropathy highlights epidermal growth factor as a biomarker for renal deterioration in patients with type 2 diabetes [J]. Kidney Int, 2016, 89(5):1125-1135.
|
[31] |
Rossing K, Mischak H, Dakna M, et al. Urinary proteomics in diabetes and CKD [J]. J Am Soc Nephrol, 2008, 19(7):1283-1290.
|
[32] |
Beermann J, Piccoli MT, Viereck J, et al. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches [J]. Physiol Rev, 2016, 96(4):1297-1325.
|
[33] |
Pezzolesi MG, Satake E, Mcdonnell KP, et al. Circulating TGF-beta1-regulated miRNAs and the risk of rapid progression to ESRD in type 1 diabetes [J]. Diabetes, 2015, 64(9):3285-3293.
|
[34] |
Shao Y, Ren H, Lv C, et al. Changes of serum Mir-217 and the correlation with the severity in type 2 diabetes patients with different stages of diabetic kidney disease [J]. Endocrine, 2017, 55(1):130-138.
|
[35] |
Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go [J]. Cell, 2016, 164(6):1226-1232.
|
[36] |
De S, Kuwahara S, Hosojima M, et al. Exocytosis-mediated urinary full-length megalin excretion is linked with the pathogenesis of diabetic nephropathy [J]. Diabetes, 2017, 66(5):1391-1404.
|
[37] |
Rossi L, Nicoletti MC, Carmosino M, et al. Urinary excretion of kidney aquaporins as possible diagnostic biomarker of diabetic nephropathy [J]. J Diabetes Res, 2017, 2017:4360357.
|
[38] |
Barutta F, Tricarico M, Corbelli A, et al. Urinary exosomal micrornas in incipient diabetic nephropathy [J]. PLoS One, 2013, 8(11):e73798.
|
[39] |
Jia Y, Guan M, Zheng Z, et al. MiRNAs in urine extracellular vesicles as predictors of early-stage diabetic nephropathy [J]. J Diabetes Res, 2016, 2016:7932765.
|
[40] |
Morrison EE, Bailey MA, Dear JW. Renal extracellular vesicles: from physiology to clinical application [J]. J Physiol, 2016, 594(20):5735-5748.
|