[1] |
Cheung CK, Alexander S, Reich HN, et al. The pathogenesis of IgA nephropathy and implications for treatment [J]. Nat Rev Nephrol, 2025, 21(1): 9-23.
|
[2] |
Barratt J, Rovin BH, Cattran D, et al. Why target the gut to treat IgA nephropathy? [J]. Kidney Int Rep, 2020, 5(10): 1620-1624.
|
[3] |
Kiryluk K, Sanchez-Rodriguez E, Zhou XJ, et al. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy [J]. Nat Genet, 2023, 55(7): 1091-1105.
|
[4] |
Chemouny JM, Gleeson PJ, Abbad L, et al. Modulation of the microbiota by oral antibiotics treats immunoglobulin A nephropathy in humanized mice [J]. Nephrol Dial Transplant, 2019, 34(7): 1135-1144.
|
[5] |
Maillard N, Wyatt RJ, Julian BA, et al. Current understanding of the role of complement in IgA nephropathy [J]. J Am Soc Nephrol, 2015, 26(7): 1503-1512.
|
[6] |
Albert V, Hall MN. mTOR signaling in cellular and organismal energetics [J]. Curr Opin Cell Biol, 2015, 33: 55-66.
|
[7] |
Jhanwar-Uniyal M, Wainwright JV, Mohan AL, et al. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship [J]. Adv Biol Regul, 2019, 72: 51-62.
|
[8] |
Fantus D, Rogers NM, Grahammer F, et al. Roles of mTOR complexes in the kidney: implications for renal disease and transplantation [J]. Nat Rev Nephrol, 2016, 12(10): 587-609.
|
[9] |
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease [J]. Nat Rev Mol Cell Biol, 2020, 21(4): 183-203.
|
[10] |
Huynh C, Ryu J, Lee J, et al. Nutrient-sensing mTORC1 and AMPK pathways in chronic kidney diseases [J]. Nat Rev Nephrol, 2023, 19(2): 102-122.
|
[12] |
Ma MKM, Yung S, Chan TM. mTOR inhibition and kidney diseases [J]. Transplantation, 2018, 102(2S Suppl 1): S32-S40.
|
[13] |
Chen L, Zhang W, Chen D, et al. RBM4 dictates ESCC cell fate switch from cellular senescence to glutamine-addiction survival through inhibiting LKB1-AMPK-axis [J]. Signal Transduct Target Ther, 2023, 8(1): 159.
|
[14] |
Guo N, Liu S, Bow LM, et al. The protective effect and mechanism of rapamycin in the rat model of IgA nephropathy [J]. Ren Fail, 2019, 41(1): 334-339.
|
[15] |
Chiou TT, Chau YY, Chen JB, et al. Rapamycin attenuates PLA2R activation-mediated podocyte apoptosis via the PI3K/AKT/mTOR pathway [J]. Biomed Pharmacother, 2021, 144: 112349.
|
[16] |
Avraham S, Korin B, Chung JJ, et al. The mesangial cell - the glomerular stromal cell [J]. Nat Rev Nephrol, 2021, 17(12): 855-864.
|
[17] |
Liu D, Liu Y, Chen G, et al. Rapamycin enhances repressed autophagy and attenuates aggressive progression in a rat model of IgA nephropathy [J]. Am J Nephrol, 2017, 45(4): 293-300.
|
[18] |
Xia M, Liu D, Tang X, et al. Dihydroartemisinin inhibits the proliferation of IgAN mesangial cells through the mTOR signaling pathway [J]. Int Immunopharmaco, 2020, 80: 106125.
|
[19] |
Tang C, Livingston MJ, Liu Z, et al. Autophagy in kidney homeostasis and disease [J]. Nat Rev Nephrol, 2020, 16(9): 489-508.
|
[20] |
Choi ME. Autophagy in kidney disease [J]. Annu Rev Physiol, 2020, 82: 297-322.
|
[21] |
Wang Z, Choi ME. Autophagy in kidney health and disease [J]. Antioxid Redox Signal, 2014, 20(3): 519-537.
|
[22] |
Liang S, Jin J, Lin B, et al. Rapamycin induces autophagy and reduces the apoptosis of podocytes under a stimulated condition of immunoglobulin A nephropathy [J]. Kidney Blood Press Res, 2017, 42(1): 177-87.
|
[23] |
Inoki K. mTOR signaling in autophagy regulation in the kidney [J]. Semin Nephrol, 2014, 34(1): 2-8.
|
[24] |
Luan R, Tian G, Ci X, et al. Differential expression analysis of urinary exosomal circular RNAs in patients with IgA nephropathy [J]. Nephrology (Carlton), 2021, 26(5): 432-441.
|
[25] |
凌春燕,张先闻,王琳. 陈氏益气活血化湿方通过调控足细胞自噬减轻PAN诱导的足细胞损伤[J]. 中国中西医结合肾病杂志,2018, 19(9): 760-763.
|
[26] |
Chen H, Zhu J, Liu Y, et al. Lipopolysaccharide induces chronic kidney injury and fibrosis through activation of mTOR signaling in macrophages [J]. Am J Nephrol, 2015, 42(4): 305-317.
|
[27] |
Eberhardt W, Nasrullah U, Pfeii J. Activation of renal profibrotic TGF-β controlled signaling cascades by calcineurin and mTOR inhibitors [J]. Cell Signal, 2018, 52: 1-11.
|
[28] |
Xu Y, Ling Y, Yang F, et al. The mTOR/p70S6K1 signaling pathway in renal fibrosis of children with immunoglobulin A nephropathy [J]. J Renin Angiotensin Aldosterone Syst, 2017, 18(3): 1470320317717831.
|
[29] |
Cao Y, Wang Y, Liu Y, et al. Decreased expression of urinary mammalian target of rapamycin mRNA is related to chronic renal fibrosis in IgAN [J]. Dis Markers, 2019, 2019: 2424751.
|
[30] |
Lafayette RA, Canetta PA, Rovin BH, et al. A randomized, controlled trial of rituximab in IgA nephropathy with proteinuria and renal dysfunction [J]. J Am Soc Nephrol, 2017, 28(4): 1306-1313.
|
[31] |
Rizk DV, Rovin BH, Zhang H, et al. Targeting the alternative complement pathway with iptacopan to treat IgA nephropathy: design and rationale of the APPLAUSE-IgAN study [J]. Kidney Int Rep, 2023, 8(5): 968-979.
|
[32] |
Santoni M, Pantano F, Amantini C, et al. Emerging strategies to overcome the resistance to current mTOR inhibitors in renal cell carcinoma [J]. Biochim Biophys Acta, 2014, 1845(2): 221-231.
|
[33] |
Fu W, Wu G. Targeting mTOR for anti-aging and anti-cancer therapy [J]. Molecules, 2023, 28(7): 3157.
|
[34] |
Mao B, Zhang Q, Ma L, et al. Overview of research into mTOR inhibitors [J]. Molecules, 2022, 27(16): 5295.
|
[35] |
Gui Y, Dai C. mTOR signaling in kidney diseases [J]. Kidney360, 2020, 1(11): 1319-1327.
|
[36] |
Fan K, Yuan S, Zhou M, et al. Enhanced biohomogeneous composite membrane-encapsulated nanoplatform with podocyte targeting for precise and safe treatment of diabetic nephropathy [J]. ACS Nano, 2023, 17(18): 18037-18054.
|
[37] |
周艾玲,王段珩,岳晓蕾,等. 中药多糖抗肿瘤作用研究进展. 中国实验方剂学杂志. 2022, 28(16): 236-244.
|
[38] |
Zhang Y, Qu Y, Chen YZ. Influence of 6-shogaol potentiated on 5-fluorouracil treatment of liver cancer by promoting apoptosis and cell cycle arrest by regulating AKT/mTOR/MRP1 signalling [J]. Chin J Nat Med, 2022, 20(5): 352-363.
|