[1] |
Saritas T, Kramann R. Kidney allograft fibrosis: diagnostic and therapeutic strategies [J]. Transplantation, 2021, 105(10):e114-e130.
|
[2] |
Rende U, Guller A, Goldys EM, et al. Diagnostic and prognostic biomarkers for tubulointerstitial fibrosis [J]. J Physiol, 2023, 601(14): 2801-2826.
|
[3] |
Ix JH, Shlipak MG. The promise of tubule biomarkers in kidney disease: a review [J]. Am J Kidney Dis, 2021, 78(5): 719-727.
|
[4] |
张轶男, 朱国贞. 急性肾损伤向慢性肾脏病转变研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(2): 106-112.
|
[5] |
Fukata F, Eriguchi M, Tamaki H, et al. Differential impact of glomerular and tubule-interstitial histological changes on kidney outcome between non-proteinuric and proteinuric diabetic nephropathy [J]. Clin Exp Nephrol, 2024, 28(4): 282-292.
|
[6] |
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines [J]. Signal Transduct Target Ther, 2023,8(1): 129.
|
[7] |
Sun H, Zhao A, Li M, et al. Interaction of calcium binding protein S100A16 with myosin-9 promotes cytoskeleton reorganization in renal tubulointerstitial fibrosis [J]. Cell Death Dis, 2020, 11(2): 146.
|
[8] |
Langewisch E, Mannon RB. Chronic allograft injury [J]. Clin J Am Soc Nephrol, 2021, 16(11): 1723-1729.
|
[9] |
Genovese F, Boor P, Papasotiriou M, et al. Turnover of type III collagen reflects disease severity and is associated with progression and microinflammation in patients with IgA nephropathy [J].Nephrol Dial Transplant, 2016, 31(3): 472-479.
|
[10] |
Papasotiriou M, Genovese F, Klinkhammer BM, et al. Serum and urine markers of collagen degradation reflect renal fibrosis in experimental kidney diseases [J]. Nephrol Dial Transplant,2015, 30(7): 1112-1121.
|
[11] |
Bülow RD, Boor P. Extracellular matrix in kidney fibrosis: more than just a scaffold [J]. J Histochem Cytochem, 2019, 67(9):643-661.
|
[12] |
Schmidt IM, Hall IE, Kale S, et al. Chitinase-like protein Brp-39/YKL-40 modulates the renal response to ischemic injury and predicts delayed allograft function [J]. J Am Soc Nephrol,2013, 24(2): 309-319.
|
[13] |
Hijmans RS, Rasmussen DG, Yazdani S, et al. Urinary collagen degradation products as early markers of progressive renal fibrosis[J]. J Transl Med, 2017, 15(1): 63.
|
[14] |
Nielsen PM, Mariager C, Rasmussen DGK, et al. Noninvasive assessment of fibrosis following ischemia/reperfusion injury in rodents utilizing Na magnetic resonance imaging [J].Pharmaceutics, 2020, 12(8): 775.
|
[15] |
Mansour SG, Puthumana J, Coca SG, et al. Biomarkers for the detection of renal fibrosis and prediction of renal outcomes: a systematic review [J]. BMC Nephrol, 2017, 18(1): 72.
|
[16] |
张磊, 金华, 王亿平, 等. 清肾颗粒对慢性肾衰竭患者肾功能及血清α-平滑肌动蛋白和E-钙粘蛋白的影响[J]. 南京中医药大学学报, 2019, 35(6): 651-654, 737.
|
[17] |
Chun-Yan L, Zi-Yi Z, Tian-Lin Y, et al. Liquid biopsy biomarkers of renal interstitial fibrosis based on urinary exosome[J]. Exp Mol Pathol, 2018, 105(2): 223-228.
|
[18] |
Hirohama D, Abedini A, Moon S, et al. Unbiased human kidney tissue proteomics identifies matrix metalloproteinase 7 as a kidney disease biomarker [J]. J Am Soc Nephrol, 2023, 34(7): 1279-1291.
|
[19] |
Grandaliano G, Gesualdo L, Bartoli F, et al. MCP-1 and EGF renal expression and urine excretion in human congenital obstructive nephropathy [J]. Kidney Int, 2000, 58(1): 182-192.
|
[20] |
Srivastava A, Schmidt IM, Palsson R, et al. The associations of plasma biomarkers of inflammation with histopathologic lesions,kidney disease progression, and mortality-the Boston kidney biopsy cohort study [J]. Kidney Int Rep, 2021, 6(3): 685-694.
|
[21] |
Chen S, Zhang M, Li J, et al. β-catenin-controlled tubular cellderived exosomes play a key role in fibroblast activation via the OPN-CD44 axis [J]. J Extracell Vesicles, 2022, 11(3):e12203.
|
[22] |
Lee YH, Seo JW, Kim M, et al. Urinary mRNA signatures as predictors of renal function decline in patients with biopsy-proven diabetic kidney disease [J]. Front Endocrinol (Lausanne),2021, 12: 774436.
|
[23] |
Lee YH, Kim KP, Park SH, et al. Urinary chemokine C-X-C motif ligand 16 and endostatin as predictors of tubulointerstitial fibrosis in patients with advanced diabetic kidney disease [J].Nephrol Dial Transplant, 2021, 36(2): 295-305.
|
[24] |
Ou SM, Tsai MT, Chen HY, et al. Identification of galectin-3 as potential biomarkers for renal fibrosis by RNA-sequencing and clinicopathologic findings of kidney biopsy [J]. Front Med(Lausanne), 2021, 8: 748225.
|
[25] |
Ou SM, Tsai MT, Chen HY, et al. Urinary galectin-3 as a novel biomarker for the prediction of renal fibrosis and kidney disease progression [J]. Biomedicines, 2022, 10(3): 585.
|
[26] |
Basturk T, Ojalvo D, Mazi EE, et al. Pentraxin-2 is associated with renal fibrosis in patients undergoing renal biopsy [J].Clinics (Sao Paulo), 2020, 75: e1809.
|
[27] |
Saejong S, Townamchai N, Somparn P, et al. MicroRNA-21 in plasma exosome, but not from whole plasma, as a biomarker for the severe interstitial fibrosis and tubular atrophy (IF/TA) in post-renal transplantation [J]. Asian Pac J Allergy Immunol,2022, 40(1): 94-102.
|
[28] |
An Y, Zhang C, Xu F, et al. Increased urinary miR-196a level predicts the progression of renal injury in patients with diabetic nephropathy [J]. Nephrol Dial Transplant, 2020, 35(6):1009-1016.
|
[29] |
Nariman-Saleh-Fam Z, Bastami M, Ardalan M, et al. Cell-free microRNA-148a is associated with renal allograft dysfunction:implication for biomarker discovery [J]. J Cell Biochem, 2019,120(4): 5737-5746.
|
[30] |
Vanhove T, Kinashi H, Nguyen TQ, et al. Tubulointerstitial expression and urinary excretion of connective tissue growth factor 3 months after renal transplantation predict interstitial fibrosis and tubular atrophy at 5 years in a retrospective cohort analysis [J].Transpl Int, 2017, 30(7): 695-705.
|
[31] |
Ju W, Nair V, Smith S, et al. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker [J]. Sci Transl Med, 2015, 7(316):316ra193.
|
[32] |
Zhao X, He X, Wei W, et al. USP22 aggravated diabetic renal tubulointerstitial fibrosis progression through deubiquitinating and stabilizing Snail1 [J]. Eur J Pharmacol, 2023, 947: 175671.
|
[33] |
李变锋, 肖贝贝, 程苗. 血液透析滤过治疗对糖尿病肾病患者肾纤维化的影响[J]. 深圳中西医结合杂志, 2022, 32(12): 83-86.
|
[34] |
Wen Y, Parikh CR. Current concepts and advances in biomarkers of acute kidney injury [J]. Crit Rev Clin Lab Sci,2021, 58(5): 354-368.
|
[35] |
Gutiérrez OM, Shlipak MG, Katz R, et al. Associations of plasma biomarkers of inflammation, fibrosis, and kidney tubular injury with progression of diabetic kidney disease: a cohort study[J]. Am J Kidney Dis, 2022, 79(6): 849-857.
|
[36] |
Malhotra R, Katz R, Jotwani V, et al. Urine markers of kidney tubule cell injury and kidney function decline in SPRINT trial participants with CKD [J]. Clin J Am Soc Nephrol, 2020, 15(3): 349-358.
|
[37] |
Garcia-Fernandez N, Jacobs-Cachá C, Mora-Gutiérrez JM, et al. Matrix metalloproteinases in diabetic kidney disease [J]. J Clin Med, 2020, 9(2): 472.
|
[38] |
Tam FWK, Ong ACM. Renal monocyte chemoattractant protein-1: an emerging universal biomarker and therapeutic target for kidney diseases? [J]. Nephrol Dial Transplant, 2020, 35(2):198-203.
|
[39] |
Grandaliano G, Gesualdo L, Ranieri E, et al. Monocyte chemotactic peptide-1 expression in acute and chronic human nephritides: a pathogenetic role in interstitial monocytes recruitment [J]. J Am Soc Nephrol, 1996, 7(6): 906-913.
|
[40] |
Sarnak MJ, Katz R, Ix JH, et al. Plasma biomarkers as risk factors for incident CKD [J]. Kidney Int Rep, 2022, 7(7):1493-1501.
|
[41] |
Schrauben SJ, Shou H, Zhang X, et al. Association of multiple plasma biomarker concentrations with progression of prevalent diabetic kidney disease: findings from the chronic renal insufficiency cohort (CRIC) study [J]. J Am Soc Nephrol,2021, 32(1): 115-126.
|
[42] |
Bouffette S, Botez I, De Ceuninck F. Targeting galectin-3 in inflammatory and fibrotic diseases [J]. Trends Pharmacol Sci,2023, 44(8): 519-531.
|
[43] |
Wang F, Zhou L, Eliaz A, et al. The potential roles of galectin-3 in AKI and CKD [J]. Front Physiol, 2023, 14: 1090724.
|
[44] |
Sciascia S, Cozzi M, Barinotti A, et al. Renal fibrosis in lupus nephritis [J]. Int J Mol Sci, 2022, 23(22): 14317.
|
[45] |
Cuadrado-Payán E, Ramírez-Bajo MJ, Bañón-Maneus E, et al.Physiopathological role of extracellular vesicles in alloimmunity and kidney transplantation and their use as biomarkers [J].Front Immunol, 2023, 14: 1154650.
|
[46] |
Rayego-Mateos S, Campillo S, Rodrigues-Diez RR, et al.Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis [J]. Clin Sci(Lond), 2021, 135(16): 1999-2029.
|
[47] |
刘思梦, 陈思, 周梦, 等. 2021年肾脏病学基础研究进展[J/OL]. 中华肾病研究电子杂志, 2022, 11(2): 79-83.
|
[48] |
吴震宇, 胡亚芬, 董晓芬, 等. 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析[J/OL]. 中华肾病研究电子杂志, 2022, 11(6): 332-337.
|