[1] |
Pollak MR. Inherited podocytopathies: FSGS and nephrotic syndrome from a genetic viewpoint [J]. J Am Soc Nephrol, 2002, 13(12): 3016-3023.
|
[2] |
刘华,易著文. 足细胞自噬与蛋白尿 [J]. 国际病理科学与临床杂志,2012, 32(4): 361-365.
|
[3] |
Jiang M, Wei Q, Dong G, et al. Autophagy in proximal tubules protects against acute kidney injury [J]. Kidney Int, 2012, 82(12): 1271-1283.
|
[4] |
王天宇,周江桥. 线粒体自噬在肾缺血-再灌注损伤中的作用[J]. 器官移植,2018, 9(3): 239-241.
|
[5] |
刘丹慧,吕建新. 线粒体自噬的研究进展[J]. 中国细胞生物学学报,2008, 30(4): 467-471.
|
[6] |
Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging [J]. Rejuvenation Res, 2005, 8(1): 3-5.
|
[7] |
Fischer F, Hamann A, Osiewacz HD. Mitochondrial quality control: an integrated network of pathways [J]. Trends Biochem Sci, 2012, 37(7): 284-292.
|
[8] |
Yuan Y, Huang S, Wang W, et al. Activation of peroxisome proliferator-activated receptor-γ coactivator 1α ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury [J]. Kidney Int, 2012, 82(7): 771-789.
|
[9] |
Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling [J]. Biochem J, 2012, 441(2): 523-540.
|
[10] |
Hill BG, Higdon AN, Dranka BP, et al. Regulation of vascular smooth muscle cell bioenergetic function by protein glutathiolation [J]. Biochim Biophys Acta, 2010, 1797(2): 285-295.
|
[11] |
胡磊,戴海明. 线粒体自噬的研究进展[J]. 中国细胞生物学学报,2018, 40(4):594-601.
|
[12] |
Qiao S, Xie H, Wang C, et al. Delayed anesthetic preconditioning protects against myocardial infarction via activation of nuclear factor-κB and upregulation of autophagy [J]. J Anesth, 2013, 27(2): 251-260.
|
[13] |
Feng J, Ma Y, Chen Z, et al. Mitochondrial pyruvate carrier 2 mediates mitochondrial dysfunction and apoptosis in high glucose-treated podocytes [J]. Life Sci, 2019, 237: 116941.
|
[14] |
Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? [J]. Br J Pharmacol, 2014, 171(8): 1917-1942.
|
[15] |
Picard M, Juster RP, McEwen BS. Mitochondrial allostatic load puts the 'gluc' back in glucocorticoids [J]. Nat Rev Endocrinol, 2014, 10(5): 303-310.
|
[16] |
Wang RM, Wang ZB, Wang Y, et al. Swiprosin-1 promotes mitochondria-dependent apoptosis of glomerular podocytes via P38 MAPK pathway in early-stage diabetic nephropathy [J]. Cell Physiol Biochem, 2018, 45(3): 899-916.
|
[17] |
Chuang PY, Xu J, Dai Y, et al. In vivo RNA interference models of inducible and reversible Sirt1 knockdown in kidney cells [J]. Am J Pathol, 2014, 184(7): 1940-1956.
|
[18] |
Calì T, Ottolini D, Negro A, et al. Enhanced Parkin levels favor ER-mitochondria crosstalk and guarantee Ca2+ transfer to sustain cell bioenergetics [J]. Biochim Biophys Acta, 2013, 1832(4): 495-508.
|
[19] |
Winklhofer KF. Parkin and mitochondrial quality control: toward assembling the puzzle [J]. Trends Cell Biol, 2014, 24(6): 332-341.
|
[20] |
Geisler S, Holmström KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 [J]. Nat Cell Biol, 2010, 12(2): 119-131.
|
[21] |
张坦,孙易,丁树哲. 线粒体自噬在运动改善胰岛素抵抗中的作用[J]. 上海体育学院学报,2017, 41(1): 50-54.
|
[22] |
梁丹阳,戴汉川. PINK1/Parkin通路在线粒体自噬氧化损伤中的作用[J]. 中国细胞生物学学报,2018, 40(1): 116-123.
|
[23] |
Durcan TM, Fon EA. The three 'P’s of mitophagy: PARKIN, PINK1, and post-translational modifications [J]. Genes Dev, 2015, 29(10): 989-999.
|
[24] |
Fallaize D, Chin LS, Li L. Differential submitochondrial localization of PINK1 as a molecular switch for mediating distinct mitochondrial signaling pathways [J]. Cell Signal, 2015, 27(12): 2543-2554.
|
[25] |
Eiyama A, Okamoto K. PINK1/Parkin-mediated mitophagy in mammalian cells [J]. Curr Opin Cell Biol, 2015, 33: 95-101.
|
[26] |
柏杖勇,李清华. PINK1/parkin,线粒体自噬与帕金森病[J]. 中国老年学,2014, 34(9): 2609-2613.
|
[27] |
Jiang XS, Chen XM, Hua W, et al. PINK1/Parkin mediated mitophagy ameliorates palmitic acid-induced apoptosis through reducing mitochondrial ROS production in podocytes [J]. Biochem Biophys Res Commun, 2020, 525(4): 954-961.
|
[28] |
Li W, Du M, Wang Q, et al. FoxO1 promotes mitophagy in the podocytes of diabetic male mice via the PINK1/Parkin Pathway [J]. Endocrinology, 2017, 158(7): 2155-2167.
|
[29] |
古贤君,林栩,凌霄雁,等. miR-155调控线粒体自噬对足细胞损伤的机制研究[J]. 右江医学,2020, 48(5): 326-333.
|
[30] |
胡流芳,王迎,任汝静,等. Keap1-Nrf2/ARE信号通路的抗氧化应激作用及其调控机制 [J]. 国际药学研究杂志,2016, 43(1): 146-152, 166.
|
[31] |
Zhao K, Li Y, Wang Z, et al. Carnosine protects mouse podocytes from high glucose induced apoptosis through PI3K/AKT and Nrf2 pathways [J]. Biomed Res Int, 2019, 2019: 4348973.
|
[32] |
Zhang Q, Deng Q, Zhang J, et al. Activation of the Nrf2-ARE pathway ameliorates hyperglycemia-mediated mitochondrial dysfunction in podocytes partly through Sirt1 [J]. Cell Physiol Biochem, 2018, 48(1): 1-15.
|
[33] |
Zuo H, Wang S, Feng J, et al. BRD4 contributes to high-glucose-induced podocyte injury by modulating Keap1/Nrf2/ARE signaling [J]. Biochimie, 2019, 10(165): 100-107.
|
[34] |
Miyazaki Y, Shimizu A, Pastan I, et al. Keap1 inhibition attenuates glomerulosclerosis [J]. Nephrol Dial Transplant, 2014, 29(4): 783-791.
|
[35] |
Mima A, Yasuzawa T, Nakamura T, et al. Linagliptin affects IRS1/Akt signaling and prevents high glucose-induced apoptosis in podocytes [J]. Sci Rep, 2020, 10(1): 5775.
|