[1] |
Zheng W, Guo J, Liu ZS. Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: an epigenetic perspective [J]. Clin Epigenetics, 2021, 13(1): 87.
|
[2] |
Adler A, Stevens R, Manley S, et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64) [J]. Kidney Int, 2003, 63(1): 225-232.
|
[3] |
Yang C, Wang J, Yang Y, et al. Impact of anemia and chronic kidney disease on the risk of cardiovascular disease and all-cause mortality among diabetic patients [J]. J Peking Univ Health Sci, 2018, 50(3): 495-500.
|
[4] |
Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025 [J]. Sci Rep, 2020, 10(1): 14790.
|
[5] |
Umanath K, Lewis J. Update on diabetic nephropathy: core curriculum 2018 [J]. Am J Kidney Dis, 2018, 71(6): 884-895.
|
[6] |
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9 edition [J]. Diabetes Res Clin Pract, 2019, 157: 107843.
|
[7] |
Jin J, Sun H, Shi C, et al. Circular RNA in renal diseases [J]. J Cell Mol Med, 2020, 24(12): 6523-6533.
|
[8] |
Eger N, Schoppe L, Schuster S, et al. Circular RNA splicing [J]. Adv Exp Med Biol, 2018, 1087: 41-52.
|
[9] |
Zhao X, Cai Y, Xu J. Circular RNAs: biogenesis, mechanism, and function in human cancers [J]. Int J Mol Sci, 2019, 20(16): 3926.
|
[10] |
Qu S, Yang X, Li X, et al. Circular RNA: a new star of noncoding RNAs [J]. Cancer Lett, 2015, 365(2): 141-148.
|
[11] |
Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs [J]. Nat Rev Genet, 2019, 20(11): 675-691.
|
[12] |
Goldfine A, Shoelson S. Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk [J]. J Clin Invest, 2017, 127(1): 83-93.
|
[13] |
Meng X. Inflammatory mediators and renal fibrosis [J]. Adv Exp Med Biol, 2019, 1165: 381-406.
|
[14] |
Shao BY, Zhang SF, Li HD, et al. Epigenetics and inflammation in diabetic nephropathy [J]. Front Physiol, 2021, 12: 649587.
|
[15] |
Tang PC, Zhang YY, Chan MK, et al. The emerging role of innate immunity in chronic kidney diseases [J]. Int J Mol Sci, 2020, 21(11): 4018.
|
[16] |
Mikuda N, Kolesnichenko M, Beaudette P, et al. The IκB kinase complex is a regulator of mRNA stability [J]. EMBO J, 2018, 37(24): e98658.
|
[17] |
Bai Y, Zhang Y, Han B, et al. Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity [J]. J Neurosci, 2018, 38(1): 32-50.
|
[18] |
Wang Q, Cang Z, Shen L, et al. circ_0037128/miR-17-3p/AKT3 axis promotes the development of diabetic nephropathy [J]. Gene, 2021, 765: 145076.
|
[19] |
Hong JN, Li WW, Wang LL, et al. Jiangtang decoction ameliorate diabetic nephropathy through the regulation of PI3K/Akt-mediated NF-κB pathways in KK-Ay mice [J]. Chin Med, 2017, 12: 13.
|
[20] |
Lin M, Tang S. Toll-like receptors: sensing and reacting to diabetic injury in the kidney [J]. Nephrol Dial Transplant, 2014, 29(4): 746-754.
|
[21] |
Panchapakesan U, Pollock C. The role of Toll-like receptors in diabetic kidney disease [J]. Curr Opin Nephrol Hypertens, 2018, 27(1): 30-34.
|
[22] |
Wang Y, Luo W, Han J, et al. MD2 activation by direct AGE interaction drives inflammatory diabetic cardiomyopathy [J]. Nat Commun, 2020, 11(1): 2148.
|
[23] |
Garibotto G, Carta A, Picciotto D, et al. Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy [J]. J Nephrol, 2017, 30(6): 719-727.
|
[24] |
Feng Q, Liu D, Lu Y, et al. The interplay of renin-angiotensin system and Toll-like receptor 4 in the inflammation of diabetic nephropathy [J]. J Immunol Res, 2020, 2020: 6193407.
|
[25] |
Chen B, Li Y, Liu Y, et al. circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells [J]. J Cell Physiol, 2019, 234(11): 21249-21259.
|
[26] |
Meng X, Nikolic-Paterson D, Lan H. TGF-β:the master regulator of fibrosis [J]. Nat Rev Nephrol, 2016, 12(6): 325-338.
|
[27] |
Xu B, Wang Q, Li W, et al. Circular RNA circEIF4G2 aggravates renal fibrosis in diabetic nephropathy by sponging miR-218 [J]. J Cell Mol Med, 2020, Epub ahead of print.
|
[28] |
Li G, Qin Y, Qin S, et al. Circ_WBSCR17 aggravates inflammatory responses and fibrosis by targeting miR-185-5p/SOX6 regulatory axis in high glucose-induced human kidney tubular cells [J]. Life Sci, 2020, 259: 118269.
|
[29] |
Hu W, Han Q, Zhao L, et al. Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-beta1 [J]. J Cell Physiol, 2019, 234(2): 1469-1476.
|
[30] |
Schwarzer R, Laurien L, Pasparakis M. New insights into the regulation of apoptosis, necroptosis, and pyroptosis by receptor interacting protein kinase 1 and caspase-8 [J]. Curr Opin Cell Biol, 2020, 63: 186-193.
|
[31] |
Ge X, Xi L, Wang Q, et al. Circular RNA circ_0000064 promotes the proliferation and fibrosis of mesangial cells via miR-143 in diabetic nephropathy [J]. Gene, 2020, 758: 144952.
|
[32] |
Tang B, Li W, Ji TT, et al. Circ-AKT3 inhibits the accumulation of extracellular matrix of mesangial cells in diabetic nephropathy via modulating miR-296-3p/E-cadherin signals [J]. J Cell Mol Med, 2020, 24(15): 8779-8788.
|
[33] |
Hu Y, Gu J, Shen H, et al. Circular RNA LARP4 correlates with decreased Enneking stage, better histological response, and prolonged survival profiles, and it elevates chemosensitivity to cisplatin and doxorubicin via sponging microRNA-424 in osteosarcoma [J]. J Clin Lab Anal, 2020, 34(2): e23045.
|
[34] |
Zhuang L, Wang Z, Hu X, et al. CircHIPK3 alleviates high glucose toxicity to human renal tubular epithelial HK-2 cells through regulation of miR-326/miR-487a-3p/SIRT1 [J]. Diabetes Metab Syndr Obes, 2021, 14: 729-740.
|
[35] |
An L, Ji D, Hu W, et al. Interference of Hsa_circ_0003928 alleviates high glucose-induced cell apoptosis and inflammation in HK-2 cells via miR-151-3p/Anxa2 [J]. Diabetes Metab Syndr Obes, 2020, 13: 3157-3168.
|
[36] |
Lin J, Cheng A, Cheng K, et al. New insights into the mechanisms of pyroptosis and implications for diabetic kidney disease [J]. Int J Mol Sci, 2020, 21(19): 7057.
|
[37] |
Wen S, Li S, Li L, et al. circACTR2: a novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis [J]. Biol Pharm Bull, 2020, 43(3): 558-564.
|
[38] |
Zhang H, Wang Z. Effect and regulation of the NLRP3 inflammasome during renal fibrosis [J]. Front Cell Dev Biol, 2020, 7: 379.
|
[39] |
Wang J, Gao Y, Zhang N, et al. miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy [J]. Mol Cell Endocrinol, 2014, 392(1-2): 163-172.
|
[40] |
Bartis D, Mise N, Mahida R, et al. Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important? [J]. Thorax, 2014, 69(8): 760-765.
|
[41] |
Liu B, Tang T, Lv L, et al. Renal tubule injury: a driving force toward chronic kidney disease [J]. Kidney Int, 2018, 93(3): 568-579.
|
[42] |
Mou X, Chenv JW, Zhou DY, et al. A novel identified circular RNA, circ_0000491, aggravates the extracellular matrix of diabetic nephropathy glomerular mesangial cells through suppressing miR101b by targeting TGFβRI [J]. Mol Med Rep, 2020, 22(5): 3785-3794.
|
[43] |
Ling L, Tan Z, Zhang C, et al. CircRNAs in exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells [J]. Am J Transl Res, 2019, 11(8): 4667-4682.
|