[1] |
Hoste EAJ, Kellum JA, Selby NM, et al. Global epidemiology and outcomes of acute kidney injury [J]. Nat Rev Nephrol, 2018, 14(10): 607-625.
|
[2] |
Zhang J, Ye ZW, Tew KD, et al. Cisplatin chemotherapy and renal function [J]. Adv Cancer Res, 2021, 152: 305-327.
|
[3] |
Hu Z, Zhang H, Yi B, et al. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis [J]. Cell Death Dis, 2020, 11(1): 73.
|
[4] |
Lin F, Chen W, Zhou J, et al. Mesenchymal stem cells protect against ferroptosis via exosome-mediated stabilization of SLC7A11 in acute liver injury [J]. Cell Death Dis, 2022, 13(3): 271.
|
[5] |
Xu J, Zhang M, Liu F, et al. Mesenchymal stem cells alleviate post-resuscitation cardiac and cerebral injuries by inhibiting cell pyroptosis and ferroptosis in a swine model of cardiac arrest [J]. Front Pharmacol, 2021, 12: 793829.
|
[6] |
Wang D, Zhang S, Ge X, et al. Mesenchymal stromal cell treatment attenuates repetitive mild traumatic brain injury-induced persistent cognitive deficits via suppressing ferroptosis [J]. J Neuroinflammation, 2022, 19(1): 185.
|
[7] |
Huang Y, Yang L. Mesenchymal stem cells and extracellular vesicles in therapy against kidney diseases [J]. Stem Cell Res Ther, 2021, 12(1): 219.
|
[8] |
Sears S, Siskind L. Potential therapeutic targets for cisplatin-induced kidney injury: lessons from other models of AKI and fibrosis [J]. J Am Soc Nephrol, 2021, 32(7): 1559-1567.
|
[9] |
Huang LL, Liao XH, Sun H, et al. Augmenter of liver regeneration protects the kidney from ischaemia-reperfusion injury in ferroptosis [J]. J Cell Mol Med, 2019, 23(6): 4153-4164.
|
[10] |
Li X, Zou Y, Xing J, et al. Pretreatment with roxadustat (FG-4592) attenuates folic acid-induced kidney injury through antiferroptosis via Akt/GSK-3beta/Nrf2 pathway [J]. Oxid Med Cell Longev, 2020, 2020: 6286984.
|
[11] |
Galipeau J, Sensebe L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities [J]. Cell Stem Cell, 2018, 22(6): 824-833.
|
[12] |
Sun Z, Wu J, Bi Q, et al. Exosomal lncRNA TUG1 derived from human urine-derived stem cells attenuates renal ischemia/reperfusion injury by interacting with SRSF1 to regulate ASCL4-mediated ferroptosis [J]. Stem Cell Res Ther, 2022, 13(1): 297.
|
[13] |
Dodson M, Castro-Portuguez R, Zhang DD. Nrf2 plays a critical role in mitigating lipid peroxidation and ferroptosis [J]. Redox Biol, 2019, 23: 101107.
|
[14] |
Hejazian SM, Hosseiniyan Khatibi SM, Barzegari A, et al. Nrf2 as a therapeutic target in acute kidney injury [J]. Life Sci, 2021, 264: 118581.
|
[15] |
Yang Y, Cai F, Zhou N, et al. Dimethyl fumarate prevents ferroptosis to attenuate acute kidney injury by acting on Nrf2 [J]. Clin Transl Med, 2021, 11(4): e382.
|
[16] |
Huang YB, Jiang L, Liu XQ, et al. Melatonin alleviates acute kidney injury by inhibiting NRF2/Slc7a11 axis-mediated ferroptosis [J]. Oxid Med Cell Longev, 2022, 2022: 4776243.
|
[17] |
Huang X, Fei GQ, Liu WJ, et al. Adipose-derived mesenchymal stem cells protect against CMS-induced depression-like behaviors in mice via regulating the Nrf2/HO-1 and TLR4/NF-kappaB signaling pathways [J]. Acta Pharmacol Sin, 2020, 41(5): 612-619.
|
[18] |
Cao H, Cheng Y, Gao H, et al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury [J]. ACS Nano, 2020, 14 (4): 4014-4026.
|