切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2012, Vol. 01 ›› Issue (02) : 119 -124. doi: 10.3877/cma.j.issn.2095-3216.2012.02.012

综述

microRNA及其在肾脏疾病中的作用
陈大鹏1,2, 陈香美1,()   
  1. 1.100853 北京,解放军总医院肾脏病科 全军肾脏病研究所 肾脏疾病国家重点实验室
    2.100853 北京,南开大学医学院
  • 收稿日期:2012-07-18 出版日期:2012-12-18
  • 通信作者: 陈香美

MicroRNA and their role in kidney disease

Da-peng CHEN1, Xiang-mei CHEN1,()   

  1. 1.Department of Nephropathy, Kidney Institute of Chinese People's Liberation Army, State Key Laboratory of Kidney Desease, Chinese People's Liberation Army General Hospital; Medical Collage, Nankai University, Tianjin 300071, China
  • Received:2012-07-18 Published:2012-12-18
  • Corresponding author: Xiang-mei CHEN
引用本文:

陈大鹏, 陈香美. microRNA及其在肾脏疾病中的作用[J/OL]. 中华肾病研究电子杂志, 2012, 01(02): 119-124.

Da-peng CHEN, Xiang-mei CHEN. MicroRNA and their role in kidney disease[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2012, 01(02): 119-124.

microRNA(miRNA)是一组片段短小的非编码RNA,通过阻断靶基因的蛋白质翻译或诱导其mRNA降解从而抑制靶基因的表达。目前,miRNA已迅速成为肾脏疾病相关的生物医学研究领域的新方向。miRNA被证实参与糖尿病肾病、IgA肾病等肾脏疾病的发生、发展及预后。因此miRNA有可能是未来针对这些疾病治疗的新靶点。本文目的是综述已有关于miRNA参与肾脏病理生理过程及对各肾脏疾病发挥作用的研究成果,并为今后肾脏疾病的诊断、治疗提供参考。

microRNAs (miRNA) are a group of short non-coding RNA, which could inhibit target gene expression via blocking the target gene protein translation or inducing mRNA degradation. Currently, miRNA has quickly become the new direction of the kidney disease-related biomedical research. miRNA has been shown to participate in the development and prognosis of the pathogenesis of diabetic nephropathy, IgA nephropathy and other kidney diseases. Therefore, miRNA may be a new target for the treatment of these diseases in the future. This review is to summarize miRNA in renal physiology and pathology and the participation process and the role of research in various kidney diseases, and to provide references for diagnosis and treatment of kidney disease in the future.

图1 microRNA(miRNA)的生物合成及作用机制 注:该图来源于文献Kato M, Arce L, Natarajan R. MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol,2009, 4(7): 1255-1266.
表1 miRNA及其在肾脏疾病中的作用
1
Kato M, Arce L, Natarajan R. MicroRNAs and their role in progressive kidney diseases [J]. Clin J Am Soc Nephrol, 2009,4(7): 1255-1266.
2
Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight [J]. Nat Rev Genet, 2008, 9(2): 102-114.
3
Kim VN. MicroRNA biogenesis: coordinated cropping and dicing[J]. Nat Rev Mol Cell Biol, 2005, 6(5): 376-385.
4
Bartel DP. MicroRNAs: target recognition and regulatory functions [J]. Cell, 2009, 136(2): 215-233.
5
Grimson A, Farh KK, Johnston WK, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing [J].Mol Cell, 2007, 27(1): 91-105.
6
Chendrimada TP, Finn KJ, Ji X, et al. MicroRNA silencing through RISC recruitment of eIF6 [J]. Nature, 2007, 447(7146): 823-828.
7
Sen GL, Blau HM. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies [J]. Nat Cell Biol, 2005, 7(6): 633-636.
8
Kim DH, Saetrom P, Snove O Jr, et al. MicroRNA-directed transcriptional gene silencing in mammalian cells [J]. Proc Natl Acad Sci U S A, 2008, 105(42): 16230-16235.
9
Liu CG, Calin GA, Meloon B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues [J]. Proc Natl Acad Sci U S A, 2004, 101(26): 9740-9744.
10
Tian Z, Greene AS, Pietrusz JL, et al. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis [J]. Genome Res, 2008, 18(3): 404-411.
11
Harvey SJ, Jarad G, Cunningham J, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease [J]. J Am Soc Nephrol, 2008, 19(11): 2150-2158.
12
Ho J, Ng KH, Rosen S, et al. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury [J]. J Am Soc Nephrol, 2008, 19(11): 2069-2075.
13
Shi S, Yu L, Chiu C, et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis [J]. J Am Soc Nephrol,2008, 19(11): 2159-2169.
14
Agrawal R, Tran U, Wessely O. The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1 [J]. Development, 2009, 136(23):3927-3936.
15
Sequeira-Lopez ML, Weatherford ET, Borges GR, et al. The microRNA-processing enzyme dicer maintains juxtaglomerular cells [J]. J Am Soc Nephrol, 2010, 21(3): 460-467.
16
Adler S. Diabetic nephropathy: Linking histology, cell biology,and genetics [J]. Kidney Int, 2004, 66(5): 2095-2106.
17
Krupa A, Jenkins R, Luo DD, et al. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy [J]. J Am Soc Nephrol, 2010, 21(3): 438-447.
18
Kato M, Putta S, Wang M, et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN [J]. Nat Cell Biol, 2009, 11(7): 881-889.
19
Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors [J]. Proc Natl Acad Sci U S A, 2007, 104(9): 3432-3437.
20
Du B, Ma LM, Huang MB, et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells [J].FEBS Lett, 2010, 584(4): 811-816.
21
Wang Q, Wang Y, Minto AW, et al. MicroRNA-377 is upregulated and can lead to increased fibronectin production in diabetic nephropathy [J]. FASEB J, 2008, 22(12): 4126-4135.
22
Wei Q, Bhatt K, He HZ, et al. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury [J]. J Am Soc Nephrol, 2010, 21(5): 756-761.
23
Godwin JG, Ge X, Stephan K, et al. Identification of a microRNA signature of renal ischemia reperfusion injury [J]. Proc Natl Acad Sci U S A, 2010, 107(32): 14339-14344.
24
Bhatt K, Zhou L, Mi QS, et al. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival [J].Mol Med, 2010, 16(9-10): 409-416.
25
Harris PC. Molecular basis of polycystic kidney disease: PKD1,PKD2 and PKHD1 [J]. Curr Opin Nephrol Hypertens, 2002,11(3): 309-314.
26
Lee SO, Masyuk T, Splinter P, et al. MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease [J]. J Clin Invest, 2008, 118(11): 3714-3724.
27
Donadio JV, Grande JP. IgA nephropathy [J]. N Engl J Med,2002, 347(10): 738-748.
28
Wang G, Kwan BC, Lai FM, et al. Intrarenal expression of microRNAs in patients with IgA nephropathy [J]. Lab Invest,2010, 90(1): 98-103.
29
Wang G, Kwan BC, Lai FM, et al. Expression of microRNAs in the urinary sediment of patients with IgA nephropathy [J]. Dis Markers, 2010, 28(2): 79-86.
30
Williams AE, Perry MM, Moschos SA, et al. Role of miRNA-146a in the regulation of the innate immune response and cancer[J]. Biochem Soc Trans, 2008, 36(Pt 6): 1211-1215.
31
Wang G, Kwan BC, Lai FM, et al. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy [J]. Dis Markers, 2011, 30(4): 171-179.
32
Lu J, Kwan BC, Lai FM, et al. Glomerular and tubulointerstitial miR-638, miR-198 and miR-146a expression in lupus nephritis [J].Nephrology (Carlton), 2012, 17(4): 346-351.
33
Kaelin WG Jr. The von Hippel-Lindau tumor suppressor gene and kidney cancer [J]. Clin Cancer Res, 2004, 10(18 Pt 2):6290S-6295S.
34
Neal CS, Michael MZ, Rawlings LH, et al. The VHL-dependent regulation of microRNAs in renal cancer [J]. BMC Med, 2010, 8: 64.
35
McCormick R, Buffa FM, Ragoussis J, et al. The role of hypoxia regulated microRNAs in cancer [J]. Curr Top Microbiol Immunol,2010, 345: 47-70.
36
White NM, Yousef GM. MicroRNAs: exploring a new dimension in the pathogenesis of kidney cancer [J]. BMC Med, 2010, 8: 65.
37
Kort EJ, Farber L, Tretiakova M, et al. The E2F3-Oncomir-1 axis is activated in Wilms' tumor [J]. Cancer Res, 2008, 68(11): 4034-4038.
38
Drake KM, Ruteshouser EC, Natrajan R, et al. Loss of heterozygosity at 2q37 in sporadic Wilms' tumor: putative role for miR-562 [J]. Clin Cancer Res, 2009, 15(19): 5985-5992.
39
Ambros V. The evolution of our thinking about microRNAs [J].Nat Med, 2008, 14(10): 1036-1040.
40
Lee NS, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells [J]. Nat Biotechnol, 2002, 20(5): 500-505.
41
Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges:competitive inhibitors of small RNAs in mammalian cells [J]. Nat Methods, 2007, 4(9): 721-726.
42
Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates [J]. Nature, 2008, 452(7189):896-899.
43
Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts [J]. Nature, 2008, 456(7224): 980-984.
44
Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis [J]. J Exp Med, 2010, 207(8): 1589-1597.
45
Gottardo F, Liu CG, Ferracin M, et al. Micro-RNA profiling in kidney and bladder cancers [J]. Urol Oncol, 2007, 25(5): 387-392.
46
Huang Y, Dai Y, Yang J, et al. Microarray analysis of microRNA expression in renal clear cell carcinoma [J]. Eur J Surg Oncol,2009, 35(10): 1119-1123.
47
Dai Y, Sui W, Lan H, et al. Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients [J].Rheumatol Int, 2009, 29(7): 749-754.
48
Wang G, Kwan BC, Lai FM, et al. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy [J]. Dis Markers, 2011, 30(4): 171-179.
49
Sun H, Li QW, Lv XY, et al. MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation [J]. Mol Biol Rep, 2010, 37(6): 2951-2958.
50
Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes [J]. Nat Immunol, 2008, 9(4): 405-414.
51
Zhang Z, Peng H, Chen J, et al. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice [J]. FEBS Lett, 2009, 583(12): 2009-2014.
52
Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling [J]. Circ Res, 2009,104(2): 170-178.
53
Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors [J]. Proc Natl Acad Sci U S A, 2007, 104(9): 3432-3437.
54
Faraoni I, Antonetti FR, Cardone J, et al. miR-155 gene: a typical multifunctional microRNA [J]. Biochim Biophys Acta, 2009,1792(6): 497-505.
55
Wang Q, Wang Y, Minto AW, et al. MicroRNA-377 is upregulated and can lead to increased fibronectin production in diabetic nephropathy [J]. FASEB J, 2008, 22(12): 4126-4135.
[1] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[2] 诸琴红, 夏典平, 葛芳娣, 崔大伟. 抗氧化和炎症指标在糖尿病肾病患者中的临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 307-311.
[3] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[4] 白香妮, 孙巨军, 谢鹤, 李宏斌. 急性胰腺炎患者血清微小RNA-142-3p和磷脂酰肌醇3-激酶水平变化及对并发腹腔感染风险预测[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 222-228.
[5] 中华医学会器官移植学分会, 中国医疗保健国际交流促进会肾脏移植学分会. 中国胰肾联合移植临床诊疗指南[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 129-147.
[6] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[7] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[8] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[9] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[10] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[11] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[12] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[13] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[14] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[15] 张梅, 陈卉, 李转霞, 王瑞, 李林娟. Metrnl和NLRP3炎症小体:糖尿病肾病的潜在诊断标志物[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(03): 193-199.
阅读次数
全文


摘要