切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2013, Vol. 02 ›› Issue (06) : 320 -323. doi: 10.3877/cma.j.issn.2095-3216.2013.06.009

综述

沉默信息调节因子l 的肾脏保护作用研究进展
关熠1, 郝传明1,()   
  1. 1.200023 上海,复旦大学附属华山医院肾病科
  • 出版日期:2013-12-15
  • 通信作者: 郝传明
  • 基金资助:
    国家重大科学研究计划项目(2011CB944001)自然科学基金重点项目(81130075)

Research progress on renal protective effects of Sirt1

Yi GUAN1, Chuan-ming HAO1,()   

  1. 1.Department of Nephrology, Huashan Hospital Affiliated to Fudan University, Shanghai 200023, China
  • Published:2013-12-15
  • Corresponding author: Chuan-ming HAO
引用本文:

关熠, 郝传明. 沉默信息调节因子l 的肾脏保护作用研究进展[J/OL]. 中华肾病研究电子杂志, 2013, 02(06): 320-323.

Yi GUAN, Chuan-ming HAO. Research progress on renal protective effects of Sirt1[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2013, 02(06): 320-323.

沉默信息调控因子2 样蛋白(Sirtuins)是一类在所有生命体内广泛存在的序列保守的蛋白质家族,可介导卡路里限制相关的健康获益机制,在包括哺乳动物在内的多种生物体中显现出延缓衰老和延长寿命的功效。 其中,哺乳动物的沉默信息调节因子1(Sirt1)是被研究最广泛的家族成员,它具有烟酰胺腺嘌呤二核苷酸(NAD +)依赖的去乙酰化酶活性,参与细胞能量代谢、氧化还原等多条信号通路的转导和组织对代谢、缺氧、氧化应激等刺激的调控。 肾脏中,Sirt1 参与正常生理调节,具有保护细胞作用。 本文对Sirt1 的生物学功能和在肾脏疾病中的研究进展进行了综述,并讨论了其作为改善肾脏病临床转归的治疗靶点的潜力。

The silent information regulator two-like proteins (Sirtuins) are a conserved family of proteins found in all domains of life,which underlie the beneficial effects of caloric restriction in most classes of organism including mammals, showing the effectiveness of delaying aging and prolonging life span.Mammalian silent information regulator 1 (Sirt1), the most extensively studied family member, possesses nicotinamide adenine dinucleotide (NAD +)-dependent deacetylase activity, being involved in transduction of many signaling pathways such as cellular energy metabolism and redox, and in regulation of metabolism,hypoxia, and oxidative stress. Sirt1 participates in the regulation of renal physiology, and is cytoprotective in the kidney. This paper has reviewed research progress about the biological functions of Sirt1 as well as its role in renal diseases, and its potential as a therapy target of renal diseases to improve clinical outcomes was also discussed.

1
Sinclair DA, Guarente L. Extrachromosomal rDNA circles- a cause of aging in Yeast[J]. Cell,1997,91(7):1033-1042.
2
Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction[J]. Proc Natl Acad Sci USA,2004,101(45):15998-16003.
3
Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in caenorhabditis elegans[J]. Nature, 2001, 410(8625):227-230.
4
Howitz KT, Bitterman KJ, Sinclair DA. Small molecule activators of sirtuins extend saccharomyces cerevisiae lifespan[J]. Nature,2003,425(6954):191-196.
5
Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function[J]. Biochem J,2007,404(1):1-13.
6
Fau HK, Fau WS, Fau YK. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function[J]. J Biol Chem,2010,285(17):13045-13056.
7
He W, Wang Y, Hao CM. Sirt1 activation protects the mouse renal medulla from oxidative injury[J]. J Clin Invest, 2010, 120(4):1056-1068.
8
Kume S, Haneda M, Koya D. Silent information regulator 2 (Sirt1)attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation [ J]. Free Radic Biol Med, 2006, 40 (12):2175-2182.
9
Zhang D, Li S, Kone BC. Sirtuin 1 functionally and physically interacts with disruptor of telomeric silencing-1 to regulate alpha-ENaC transcription in collecting duct [J]. J Biol Chem,2009,284(31):20917-20926.
10
Ss W, Kd L. Diagnosis, epidemiology and outcomes of acute kidney injury[J]. Clin J Am Soc Nephrol,2008,3(3):844-861.
11
Lempiainen J, Finckenberg P, Mervaala EM. Caloric restriction ameliorates kidney ischaemia/reperfusion injury through PGC-1 alpha-eNOS pathway and enhanced autophagy[J]. Acta Physiol(Oxf),2013,208(4):410-421.
12
DH K, YJ J, JE L. Sirt1 activation by resveratrol ameliorates cisplatin-induced renal injury through deacetylation of p53 [J]. Am J Physiol Renal Physiol,2011,301(2): F427-F435.
13
Kalakeche R, Hato T, Dagher PC. Endotoxin uptake by S1 proximal tubular segment causes oxidative stress in the downstream S2 segment[J]. J Am Soc Nephrol,2011,22(8):1505-1516.
14
Fan H, Yang HC, Hao CM. The histone deacetylase, Sirt1,contributes to the resistance of young mice to ischemia/reperfusioninduced acute kidney injury[J]. Kidney Int, 2013, 83 (3):404-413.
15
Funk JA, Schnellmann RG. Accelerated recovery of renal mitochondrial and tubule homeostasis with Sirt1/PGC-1alpha activation following ischemia-reperfusion injury[J]. Toxicol Appl Pharmacol,2013,273(2):345-354.
16
Simic P, Williams EO, Guarente L. Sirt1 suppresses the epithelialto-mesenchymal transition in cancer metastasis and organ fibrosis[J]. Cell Rep,2013,3(4):1175-1186.
17
Edelstein CL. Mammalian target of rapamycin and caspase inhibitors in polycystic kidney disease[J]. Clin J Am Soc Nephrol, 2008, 3(4):1219-1226.
18
Wong S, Weber JD. Deacetylation of the retinoblastoma tumour suppressor protein by Sirt1 [J]. Biochem J, 2007, 407 (3):451-460.
19
Harbour JW, Dean DC. The Rb/E2F pathway: expanding roles and emerging paradigms[J]. Genes Dev,2000,14(19):2393-2409.
20
Zhou X, Fan LX, Li X. Sirtuin 1 inhibition delays cyst formation in autosomal-dominant polycystic kidney disease[J]. J Clin Invest,2013,123(7):3084-3098.
21
Hasegawa K, Wakino S, Yoshioka K, et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function [J]. J Biol Chem, 2010, 285(17):13045-13056.
22
Maeda S, Koya D, Araki S, et al. Association between single nucleotide polymorphisms within genes encoding sirtuin families and diabetic nephropathy in Japanese subjects with type 2 diabetes[J].Clin Exp Nephrol,2011,15(3):381-390.
23
Kitada M, Kume S, Imaizumi N, et al. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway[J]. Diabetes,2011,60(2):634-643.
24
Kim MY, Lim JH, Youn HH, et al. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-Sirt1-PGC1alpha axis in db/db mice[J].Diabetologia,2013,56(1):204-217.
25
Mattagajasingh I, Kim CS, Naqvi A, et al. Sirt1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase[J]. Proc Natl Acad Sci USA, 2007, 104(37):14855-14860.
26
Miyazaki R, Ichiki T, Hashimoto T, et al. Sirt1, a longevity gene,downregulates angiotensin Ⅱtype 1 receptor expression in vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol, 2008, 28(7):1263-1269.
27
Li J, Qu X, Ricardo SD, et al. Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3[J].Am J Pathol,2010,177(3):1065-1071.
28
Huang XZ, Wen D, Zhang M, et al. Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-β/Smad3 pathway[J]. J Cell Biochem,2014,115(5):996-1005.
29
Kume S, Uzu T, Horiike K, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney [J]. The Journal of clinical investigation,2010,120(4):1043-1055.
30
Poulsen MM, Vestergaard PF, Clasen BF, et al. High-dose resveratrol supplementation in obese men: an investigator-initiated,randomized, placebo-controlled clinical trial of substrate metabolism,insulin sensitivity, and body composition[J]. Diabetes, 2013, 62(4):1186-1195.
[1] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[2] 诸琴红, 夏典平, 葛芳娣, 崔大伟. 抗氧化和炎症指标在糖尿病肾病患者中的临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 307-311.
[3] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[4] 中华医学会器官移植学分会, 中国医疗保健国际交流促进会肾脏移植学分会. 中国胰肾联合移植临床诊疗指南[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 129-147.
[5] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[6] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国肝移植受者肾损伤管理临床实践指南(2023版)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 276-288.
[7] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[8] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[9] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[10] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[11] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[12] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[13] 崔秋子, 姚红曼, 艾迎春. 监测NLR、PLR、CAR、白蛋白、血钙及血糖指标水平对急性胰腺炎患者急性肾损伤的预测价值分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 244-248.
[14] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[15] 白璐, 李青霞, 冯一卓, 刘雪倩, 刘若琪, 曲卓敏, 赵凌霞. 丁酸盐治疗糖尿病肾病的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 303-308.
阅读次数
全文


摘要