切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2016, Vol. 05 ›› Issue (06) : 249 -253. doi: 10.3877/cma.j.issn.2095-3216.2016.06.003

所属专题: 文献

专家论坛

急性肾损伤的体外细胞治疗
马帅1, 丁峰1,()   
  1. 1. 400042 上海交通大学医学院附属第九人民医院肾脏科、 危重肾脏病研究室
  • 收稿日期:2016-05-21 出版日期:2016-12-28
  • 通信作者: 丁峰
  • 基金资助:
    国家自然科学基金项目(81070609, 81270850, 81470990); 上海市科委重点项目(11441901401); 国家科技支撑项目(2011BAI10B08); 上海市浦东新区卫计委联合攻关项目(PW2015D-4); 上海交通大学医工交叉重点项目(YG2014ZD06)

Extracorporeal cell therapy for acute kidney injury

Shuai Ma1, Feng Ding1,()   

  1. 1. Department of Nephrology, Ninth Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 400042, China
  • Received:2016-05-21 Published:2016-12-28
  • Corresponding author: Feng Ding
  • About author:
    Corresponding author: Ding Feng, Email:
引用本文:

马帅, 丁峰. 急性肾损伤的体外细胞治疗[J]. 中华肾病研究电子杂志, 2016, 05(06): 249-253.

Shuai Ma, Feng Ding. Extracorporeal cell therapy for acute kidney injury[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2016, 05(06): 249-253.

急性肾损伤是临床常见病,其发病率有逐年升高趋势。伴有急性肾损伤的危重症患者往往具有高死亡率的特点。近年来,开展了众多不同于传统疗法的治疗研究,以期改变急性肾损伤患者预后不佳的现状。其中,细胞疗法逐渐发展为一种用于治疗大量临床疾病的新方法。出于安全考虑,体外细胞疗法可能会是一种更好的选择,因为其不仅替代了受损细胞的功能或调整了病理生理过程,而且提供了免疫绝缘屏障。本文就肾小管上皮细胞、粒细胞及血管内皮细胞的不同体外细胞疗法做出阐述。相比于传统的连续性肾脏替代治疗,肾小管上皮细胞、粒细胞的体外细胞疗法对于急性肾损伤患者的存活有着重大且积极的影响。上海交通大学医学院附属第九人民医院肾脏科构建了一种血管内皮体外细胞治疗系统,可明显改善脓毒症动物的血流动力学稳定性及多种脏器功能,并提高存活率。这些研究对于改善急性肾损伤患者的预后具有积极意义。

Acute kidney injury (AKI) is a common disease, with an increasing incidence, and critically ill patients with AKI are usually associated with a high mortality. Recently, novel therapeutic approaches have been developed to change this dismal prognosis in patients with AKI, among which cell therapy has developed into a new method to treat a vast array of clinical disorders. For safety reasons, extracorporeal cell therapy may be a better choice, which not only replaces the function of injured cells or modulates the pathophysiological processes, but also provides an immunoprotective barrier. This review focused on different extracorporeal cell therapies with renal epithelial cells, granulocytes, and vascular endothelial cells. Extracorporeal cell therapy with renal epithelial cells or granulocytes has a significant positive effect on the survival of patients with AKI, compared with the conventional continuous renal replacement treatment. The authors had developed an endothelial cell therapy system, which could significantly improve the cardiovascular performance, organ function, and survival in animals with sepsis. These advances will result in an improvement of the current dismal prognosis of patients suffering from AKI.

1
Thakar CV, Christianson A, Freyberg R, et al. Incidence and outcomes of acute kidney injury in intensive care units: A veterans administration study [J]. Crit Care Med, 2009, 37(9):2552-2558.
2
Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study [J]. JAMA, 2005, 294(7):813-818.
3
Waikar SS, Liu KD, Chertow GM. Diagnosis, epidemiology and outcomes of acute kidney injury [J]. Clin J Am Soc Nephrol, 2008, 3(3):844-861.
4
Liano F, Pascual J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group [J]. Kidney Int, 1996, 50(3):811-818.
5
Mehta RL, Pascual MT, Soroko S, et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience [J]. Kidney Int, 2004, 66(4):1613-1621.
6
Pino CJ, Yevzlin AS, Tumlin J, et al. Cell-based strategies for the treatment of kidney dysfunction: a review [J]. Blood Purif, 2012, 34(2):117-123.
7
Zarjou A, Agarwal A. Sepsis and acute kidney injury [J]. J Am Soc Nephrol, 2011, 22(6):999-1006.
8
Humes HD. Cell therapy: leveraging nature′s therapeutic potential [J]. J Am Soc Nephrol, 2003, 14(8):2211-2213.
9
Fissell WH, Humes HD. Cell therapy of renal failure [J]. Transplant Proc, 2003, 35(8):2837-2842.
10
Cribbs SK, Martin GS. Stem cells in sepsis and acute lung injury [J]. Am J Med Sci, 2011, 341(4):325-332.
11
Mei SH, Haitsma JJ, Dos Santos CC, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis [J]. Am J Respir Crit Care Med, 2010, 182(8):1047-1057.
12
Gupta N, Su X, Popov B, et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice [J]. J Immunol, 2007, 179(3):1855-1863.
13
Kähler CM, Wechselberger J, Hilbe W, et al. Peripheral infusion of rat bone marrow derived endothelial progenitor cells leads to homing in acute lung injury [J]. Respir Res, 2007, 8:50.
14
Ding F, Humes HD. The bioartificial kidney and bioengineered membranes in acute kidney injury [J]. Nephron Exp Nephrol, 2008, 109(4):e118-e122.
15
Humes HD, Fissell WH, Weitzel WF. The bioartificial kidney in the treatment of acute renal failure [J]. Kidney Int Suppl, 2002, 80:121-125.
16
Fissell WH, Lou L, Abrishami S, et al. Bioartificial kidney ameliorates gram-negative bacteria-induced septic shock in uremic animals [J]. J Am Soc Nephrol, 2003, 14(2):454-461.
17
MacKay SM, Funke AJ, Buffington DA, et al. Tissue engineering of a bioartificial renal tubule [J]. ASAIO J, 1998, 44(3):179-183.
18
Humes HD, MacKay SM, Funke AJ, et al. Tissue engineering of a bioartificial renal tubule assist device: In vitro transport and metabolic characteristics [J]. Kidney Int, 1999, 55(6):2502-2514.
19
Humes HD, Buffington DA, MacKay SM, et al. Replacement of renal function in uremic animals with a tissue-engineered kidney [J]. Nat Biotechnol, 1999, 17(5):451-455.
20
Humes HD, Fissell WH, Weitzel WF, et al. Metabolic replacement of kidney function in uremic animals with a bioartificial kidney containing human cells [J]. Am J Kidney Dis, 2002, 39(5):1078-1087.
21
Humes HD, Buffington DA, Lou L, et al. Cell therapy with a tissue- engineered kidney reduces the multiple-organ consequences of septic shock [J]. Crit Care Med, 2003, 31(10):2421-2428.
22
Fissell WH, Dyke DB, Weitzel WF, et al. Bioartificial kidney alters cytokine response and hemodynamics in endotoxin-challenged uremic animals [J]. Blood Purif, 2002, 20(1):55-60.
23
Humes HD, Weitzel WF, Bartlett RH, et al. Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure [J]. Kidney Int, 2004, 66(4):1578-1588.
24
Tumlin J, Wali R, Williams W, et al. Efficacy and safety of renal tubule cell therapy for acute renal failure [J]. J Am Soc Nephrol, 2008, 19(5):1034-1040.
25
Buffington DA, Pino CJ, Chen L, et al. Bioartificial renal epithelial cell system (BRECS): A compact, cryopreservable extracorporeal renal replacement device [J]. Cell Med, 2012, 4(1):33-43.
26
Döcke WD, Randow F, Syrbe U, et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment [J]. Nat Med, 1997, 3(6):678-681.
27
Caille V, Chiche JD, Nciri N, et al. Histocompatibility leukocyte antigen-D related expression is specifically altered and predicts mortality in septic shock but not in other causes of shock [J]. Shock, 2004, 22(6):521-526.
28
Kaufmann I, Hoelzl A, Schliephake F, et al. Polymorphonuclear leukocyte dysfunction syndrome in patients with increasing sepsis severity [J]. Shock, 2006, 26(3):254-261.
29
Carr R, Modi N, Doré C. G-CSF and GM-CSF for treating or preventing neonatal infections [J]. Cochrane Database Syst Rev, 2003, 3:CD003066.
30
Napolitano LM. Immune stimulation in sepsis: to be or not to be? [J]. Chest, 2005, 127(6):1882-1885.
31
Stanworth SJ, Massey E, Hyde C, et al. Granulocyte transfusions for treating infections in patients with neutropenia or neutrophil dysfunction [J]. Cochrane Database Syst Rev, 2005, 3:CD005339.
32
Safdar A, Hanna HA, Boktour M, et al. Impact of high-dose granulocyte transfusions in patients with cancer with candidemia: retrospective case-control analysis of 491 episodes of Candida species bloodstream infections [J]. Cancer, 2004, 101(12):2859-2865.
33
Mohan P, Brocklehurst P. Granulocyte transfusions for neonates with confirmed or suspected sepsis and neutropaenia [J]. Cochrane Database Syst Rev, 2003, 4:CD003956.
34
Sauer M, Altrichter J, Kreutzer HJ, et al. Extracorporeal cell therapy with granulocytes in a pig model of Gram-positive sepsis [J]. Crit Care Med, 2009, 37(2):606-613.
35
Altrichter J, Sauer M, Kaftan K, et al. Extracorporeal cell therapy of septic shock patients with donor granulocytes: a pilot study [J]. Crit Care, 2011, 15(2):R82.
36
Mitzner SR, Freytag J, Sauer M, et al. Use of human preconditioned phagocytes for extracorporeal immune support: introduction of a concept [J]. Ther Apher, 2001, 5(5):423-432.
37
Xie Q, Liu J, Gu Y, et al. Endothelial bioreactor ameliorates endotoxemia sepsis in swine [J]. Blood Purif, 2010, 29(3):252-258.
38
Ait-Oufella H, Maury E, Lehoux S, et al. The endothelium: physiological functions and role in microcirculatory failure during severe sepsis [J]. Intensive Care Med, 2010, 36(8):1286-1298.
39
Skibsted S, Jones AE, Puskarich MA, et al. Biomarkers of endothelial cell activation in early sepsis [J]. Shock, 2013, 39(5):427-432.
40
Aird WC. Endothelium as a therapeutic target in sepsis [J]. Curr Drug Targets, 2007, 8(4):501-507.
41
Brodsky SV, Yamamoto T, Tada T, et al. Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells [J]. Am J Physiol Renal Physiol, 2002, 282(6):1140-1149.
42
Herrler T, Wang H, Tischer A, et al. Decompression of inflammatory edema along with endothelial cell therapy expedites regeneration after renal ischemia-reperfusion injury [J]. Cell Transplant, 2013, 22(11):2091-2103.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[3] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[4] 娄丽丽, 刘瀚旻. 儿童狼疮性肾炎相关肾小管间质损伤的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 373-378.
[5] 陆美琪, 赵洁, 单菲, 王兴蕾, 姜笃银. 药物相关坏疽性脓皮病的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 447-450.
[6] 王汉生, 陈晓, 尤辉, 刘岩, 任涛, 王梅芳. 肺吸虫感染致胸腔积液6例临床分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 348-353.
[7] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[8] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[9] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[10] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[11] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[12] 王庆, 夏婷婷. 未成熟粒细胞计数、C反应蛋白、中性粒细胞/淋巴细胞、降钙素原结合MCTSI评分在急性胆源性胰腺炎中的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 224-228.
[13] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[14] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[15] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
阅读次数
全文


摘要