切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2017, Vol. 06 ›› Issue (03) : 120 -126. doi: 10.3877/cma.j.issn.2095-3216.2017.03.006

所属专题: 文献

论著

自噬和p53凋亡刺激蛋白在大鼠急性肾损伤模型中的表达及早期诊断价值
李青霖1, 王小丹1,(), 杜婧1, 李玉茹2, 傅博3, 吕杨3   
  1. 1. 100853 北京,解放军总医院南楼保健科
    2. 解放军总医院南楼检验科
    3. 肾脏疾病国家重点实验室
  • 收稿日期:2017-01-21 出版日期:2017-06-28
  • 通信作者: 王小丹
  • 基金资助:
    国家自然科学基金(81370452)

Early diagnosis value of autophagy and expression of apoptosis-stimulating proteins of p53 in acute kidney injury model of rats

Qinglin Li1, Xiaodan Wang1,(), Jing Du1, Yuru Li2, Bo Fu3, Yang Lyu3   

  1. 1. Division of Health Care, Clinical Department of South Building
    2. Division of Laboratory Test, Clinical Department of South Building
    3. State Key Laboratory of Kidney Diseases; General Hospital of PLA, Beijing 100853, China
  • Received:2017-01-21 Published:2017-06-28
  • Corresponding author: Xiaodan Wang
  • About author:
    Corresponding author: Wang Xiaodan, Email:
引用本文:

李青霖, 王小丹, 杜婧, 李玉茹, 傅博, 吕杨. 自噬和p53凋亡刺激蛋白在大鼠急性肾损伤模型中的表达及早期诊断价值[J/OL]. 中华肾病研究电子杂志, 2017, 06(03): 120-126.

Qinglin Li, Xiaodan Wang, Jing Du, Yuru Li, Bo Fu, Yang Lyu. Early diagnosis value of autophagy and expression of apoptosis-stimulating proteins of p53 in acute kidney injury model of rats[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2017, 06(03): 120-126.

目的

观察自噬相关蛋白和p53凋亡刺激蛋白( ASPPs)在肾损伤早期的表达变化,探讨自噬相关蛋白和ASPPs是否可能成为急性肾损伤(AKI)早期损伤生物标志物。

方法

建立顺铂AKI大鼠模型,将46只雄性SD青年大鼠随机分为假手术组(Sham),顺铂模型组;模型组大鼠一次性腹腔注射顺铂5 mg/kg,Sham组相同途径注射等容量生理盐水;在给药1、3、7、10、14 d时检测大鼠血清肌酐(Scr)、尿素氮(BUN)和胱抑素C (cystatin C,Cys C)水平;光镜观察大鼠肾脏病理变化;透射电镜观察大鼠肾小管上皮细胞超微结构变化及自噬体的情况;免疫印迹法检测肾脏组织LC3、Atg5-Atg12、Beclin 1、LAMP-2、p62、p53及iASPP和ASPP1表达情况。所有数据采用SPSS 17.0统计软件分析。

结果

青年大鼠暴露于顺铂1 d时,与Sham组比较,顺铂模型组大鼠Scr、BUN、胱抑素C显著升高(P<0.05);光镜检查发现肾小管损害明显加重;电镜结果显示,顺铂模型组大鼠平均自噬体数量明显增多;顺铂诱导后1 d开始,肾脏组织iASPP蛋白表达明显减少(P<0.05),Atg5-Atg12、Beclin 1、LAMP-2、p62、p53及ASPP1蛋白表达明显升高(P<0.05)。肾脏组织LC3表达从3 d时明显降低(P<0.05)。

结论

自噬和ASPPs在AKI发生早期即可出现并参与了AKI的发生发展,在Scr开始升高前,反应性自噬已经启动。自噬相关蛋白和ASPPs有望成为AKI更早期的损伤标志物,可能是AKI早期干预的新靶点,但仍需更深入的研究。

Objective

To observe the expression changes of autophagy-related proteins and apoptosis-stimulating proteins of p53 (ASPPs) in early kidney injury, in order to investigate whether autophagy-related proteins and ASPPs can be biomarkers of early acute kidney injury (AKI) induced by cisplatin in Sprague-Dawley (SD) rats.

Methods

A total of 46 eight-week-old male SD rats were randomly divided into sham group and cisplatin model group. The rats in the model group were injected intraperitoneally with cisplatin 5mg/kg once, while rats in the sham group were treated in the same way with normal saline of the same volume. Serum creatinine (Scr), blood urea nitrogen (BUN), and cystatin C (Cys C) were measured at 1, 3, 7, 10 and 14 days after the administration. The kidneys pathological changes were observed under light microscopy. Ultrastructural changes and autophagy of rat renal tubular epithelial cells were observed under transmission electron microscopy. Expressions of LC3, Atg5-Atg12, Beclin 1, LAMP-2, p62, p53, iASPP, and ASPP1 were detected with Western blotting.

Results

At 1 day after the administration, levels of Scr, BUN, and Cys C in the cisplatin group were significantly higher than those in the sham group (P<0.05), and the renal tubular injury was significantly increased under light microscopy. The results of electron microscopy showed that the average number of autophagy was significantly increased in the cisplatin model group. From 1 day after the administration, the expression of iASPP protein in kidneys tissues was significantly decreased (P<0.05), while the expressions of Atg5-Atg12, Beclin1, LAMP-1, p62, p53, and ASPP1 proteins in the cisplatin model group was significantly higher than those in the sham group (P<0.05). The expression of LC3 in renal tissues was significantly decreased from 3 days after the administration (P<0.05).

Conclusions

Autophagy and ASPPs occurred in early AKI, and were involved in the development and progression of AKI. Reactive autophagy had been initiated before Scr began to increase. Although autophagy-related proteins and ASPPs are expected to be earlier markers of AKI, which may provide new targets for early intervention in AKI, further studies are still needed.

图1 顺铂注射后不同时间各组大鼠血清肌酐、尿素氮和胱抑素C的变化
图2 顺铂注射后不同时间各组大鼠肾组织病理图片(PAS×400)
图3 顺铂注射后不同时间各组大鼠肾小管上皮细胞自噬体,箭头所示自噬体(电镜×50 000)
图4 顺铂注射不同时间各组大鼠平均出现的自噬体
图5 顺铂注射后不同时间各组大鼠肾组织自噬相关蛋白表达情况及定量分析
[1]
Xu X, Nie S, Liu Z, et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults [J]. Clin J Am Soc Nephrol, 2015, 10(9): 1510-1518.
[2]
Kilic U, Kilic E, Tuzcu Z, et al. Melatonin suppresses cisplatin-induced nephrotoxicity via activation of Nrf-2/HO-1 pathway [J]. Nutr Metab (Lond), 2013, 10(1): 7.
[3]
Wei Q, Dong G, Yang T, et al. Activation and involvement of p53 in cisplatin-induced nephrotoxicity [J]. Am J Physiol Renal Physiol, 2007, 293(4): F1282-F1291.
[4]
Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury [J]. Kidney Int Suppl, 2012, 2: 1-138.
[5]
程庆砾.老年人急性肾损伤[J]. 临床肾脏病杂志,2015,(7): 388-391.
[6]
蔡广研,卜茹.急性肾损伤概念和诊断标准的变迁[J/CD]. 中华肾病研究电子杂志,2013,2(3): 115-119.
[7]
Lynch GS. Emerging drugs for sarcopenia: age-related muscle wasting[J]. Expert Opin Emerg Drugs, 2008, 13(4): 345-361.
[8]
李荣山.急性肾损伤的生物标志物[J/CD]. 中华肾病研究电子杂志,2013,2(3): 134-137.
[9]
Iyngkaran P, Schneider H, Devarajan P, et al. Cardio-renal syndrome: new perspective in diagnostics [J]. Semin Nephrol, 2012, 32(1): 3-17.
[10]
李立斌,严静.急性肾损伤的早期诊治:路在何方?[J]. 中华危重病急救医学,2014,26(4): 209-211.
[11]
Crotzer VL, Blum JS. Autophagy and adaptive immunity [J]. Immunology, 2010, 131(1): 9-17.
[12]
Livingston MJ, Dong Z. Autophagy in acute kidney injury [J]. Semin Nephrol, 2014, 34(1): 17-26.
[13]
Kaushal GP, Shah SV. Autophagy in acute kidney injury [J]. Kidney Int, 2016, 89(4): 779-791.
[14]
Periyasamy-Thandavan S, Jiang M, Wei Q, et al. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells [J]. Kidney Int, 2008, 74(5): 631-640.
[15]
Wang Y, Godin-Heymann N, Dan Wang X, et al. ASPP1 and ASPP2 bind active RAS, potentiate RAS signalling and enhance p53 activity in cancer cells [J]. Cell Death Differ, 2013, 20(4): 525-534.
[16]
Wilson AM, Morquette B, Abdouh M, et al. ASPP1/2 regulate p53-dependent death of retinal ganglion cells through PUMA and Fas/CD95 activation in vivo [J]. J Neurosci, 2013, 33(5): 2205-2216.
[17]
Song B, Bian Q, Zhang YJ, et al. Downregulation of ASPP2 in pancreatic cancer cells contributes to increased resistance to gemcitabine through autophagy activation [J]. Mol Cancer, 2015, 14: 177.
[18]
Chikh A, Sanza P, Raimondi C, et al. iASPP is a novel autophagy inhibitor in keratinocytes [J]. J Cell Sci, 2014, 127(Pt 14): 3079-3093.
[19]
Wang Y, Wang XD, Lapi E, et al. Autophagic activity dictates the cellular response to oncogenic RAS [J]. Proc Natl Acad Sci USA, 2012, 109(33): 13325-13330.
[20]
肖梦云,王小丹,洪权,等.洛汀新和科素亚对糖尿病肾病大鼠足细胞的保护作用[J]. 西安交通大学学报:医学版,2014,35(5): 659-664.
[21]
潘明娇,王小丹.自噬在高血压足细胞损伤中的作用[J]. 中国循环杂志,2015,30(1): 94-97.
[22]
潘明娇,肖梦云,吕杨,等.贝那普利和氯沙坦对老年自发性高血压大鼠肾小球足细胞自噬的影响及作用机制[J]. 中华老年医学杂志,2016,35(8): 888-893.
[23]
潘明娇,肖梦云,吕杨,等.衰老和高血压对大鼠肾皮质血管紧张素Ⅱ及肾小球足细胞自噬的影响[J]. 中华老年医学杂志,2016,35(4): 421-426.
[24]
Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research [J]. Cell, 2010, 140(3): 313-326.
[25]
Takabatake Y, Kimura T, Takahashi A, et al. Autophagy and the kidney: health and disease [J]. Nephrol Dial Transplant, 2014, 29(9): 1639-1647.
[26]
Shibutani ST, Yoshimori T. A current perspective of autophagosome biogenesis [J]. Cell Res, 2014, 24(1): 58-68.
[27]
Mehrpour M, Esclatine A, Beau I, et al. Overview of macroautophagy regulation in mammalian cells [J]. Cell Res, 2010, 20(7): 748-762.
[28]
Klionsky DJ, Abdalla FC, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy [J]. Autophagy, 2012, 8(4): 445-544.
[29]
Lenoir O, Tharaux PL, Huber TB. Autophagy in kidney disease and aging: lessons from rodent models [J]. Kidney Int, 2016, 90(5): 950-964.
[30]
Rubinsztein DC, Cuervo AM, Ravikumar B, et al. In search of an "autophagomometer" [J]. Autophagy, 2009, 5(5): 585-589.
[31]
Barth S, Glick D, Macleod KF. Autophagy: assays and artifacts [J]. J Pathol, 2010, 221(2): 117-124.
[32]
Kundu M, Thompson CB. Autophagy: basic principles and relevance to disease [J]. Annu Rev Pathol, 2008, 3: 427-455.
[33]
Weidberg H, Shvets E, Elazar Z. Biogenesis and cargo selectivity of autophagosomes [J]. Annu Rev Biochem, 2011, 80: 125-156.
[34]
Jiang M, Wei Q, Dong G, et al. Autophagy in proximal tubules protects against acute kidney injury [J]. Kidney Int, 2012, 82(12): 1271-1283.
[35]
Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein [J]. Cell Research, 2007, 17(10): 839-849.
[36]
Xiong J, Xia M, Xu M, et al. Autophagy maturation associated with CD38-mediated regulation of lysosome function in mouse glomerular podocytes [J]. J Cell Mol Med, 2013, 17(12): 1598-1607.
[37]
Kimura T, Takabatake Y, Takahashi A, et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury [J]. J Am Soc Nephrol, 2011, 22(5): 902-913.
[38]
Rovetta F, Stacchiotti A, Consiglio A, et al. ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin [J]. Exp Cell Res, 2012, 318(3): 238-250.
[39]
Yang C, Kaushal V, Shah SV, et al. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells [J]. Am J Physiol Renal Physiol, 2008, 294(4): F777-F787.
[1] 杨桂清, 孟静静. 哺乳期亚临床乳腺炎的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 376-379.
[2] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[3] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[4] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[5] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[6] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[7] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[8] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[9] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[10] 张晓青, 唐雯. 基于临床化验指标重新计算的生物标记物在预测腹膜透析患者预后中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 213-218.
[11] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[12] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[13] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[14] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要