[1] |
Xu X, Nie S, Liu Z, et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults [J]. Clin J Am Soc Nephrol, 2015, 10(9): 1510-1518.
|
[2] |
Zhang J, Zhang L, Wang W, et al. Association between aristolochic acid and CKD: a cross-sectional survey in China [J]. Am J Kidney Dis, 2013, 61(6): 918-922.
|
[3] |
Luciano RL, Perazella MA. Aristolochic acid nephropathy: epidemiology, clinical presentation, and treatment [J]. Drug Saf, 2015, 38(1): 55-64.
|
[4] |
Jelakovic B, Vukovic Lela I, Karanovic S, et al. Chronic dietary exposure to aristolochic acid and kidney function in native farmers from a Croatian endemic area and Bosnian immigrants [J]. Clin J Am Soc Nephrol, 2015, 10(2): 215-223.
|
[5] |
Ng AWT, Poon SL, Huang MN, et al. Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia [J]. Sci Transl Med, 2017, 9 (421): pii:eaan6446
|
[6] |
Debelle FD, Vanherweghem JL, Nortier JL. Aristolochic acid nephropathy: a worldwide problem [J].Kidney Int, 2008, 74(2): 158-169.
|
[7] |
Bracinska H, Bárta F, Levová K, et al. Induction of cytochromes P450 1A1 and 1A2 suppresses formation of DNA adducts by carcinogenic aristolochic acid I in rats in vivo [J]. Toxicology, 2016, 344-346: 7-18.
|
[8] |
Stiborova M, Frei E, Arlt VM, et al. Metabolic activation of carcinogenic aristolochic acid, a risk factor for Balkan endemic nephropathy [J]. Mutat Res, 2008, 658 (1-2): 55-67.
|
[9] |
Xue X, Gong LK, Maeda K, et al. Critical role of organic anion transporters 1 and 3 in kidney accumulation and toxicity of aristolochic acid I [J]. Mol Pharm, 2011, 8(6): 2183-2192.
|
[10] |
Zeng Y, Zhang R, Wu J, et al. Organic anion transporter 1(OAT1) involved in renal cell transport of aristolochic acid I[J]. Hum Exp Toxicol, 2012, 31(8): 759-770.
|
[11] |
张锐,阳晓,刘眉,等. 肾小管上皮细胞有机阴离子转运蛋白1在马兜铃酸Ⅰ跨细胞转运及其在细胞毒性中的作用[J]. 中华肾脏病杂志,2009, 25 (8): 624-629.
|
[12] |
Baudoux TE, Pozdzik AA, Arlt VM, et al. Probenecid prevents acutetubular necrosis in a mouse model of aristolochic acid nephropathy [J]. Kidney Int, 2012, 82 (10): 1105-1113.
|
[13] |
Yu FY, Wu TS, Chen TW, et al. Aristolochic acid I induced oxidative DNA damage associated with glutathione depletion and ERK1/2 activation in human cells [J]. Toxicol In Vitro, 2011, 25 (4): 810-816.
|
[14] |
Qi X, Cai Y, Gong L, et al. Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid [J]. Toxicol Appl Pharmacol, 2007, 222 (1): 105-110.
|
[15] |
Zeng Y, Li S, Wu J, et al. Autophagy inhibitors promoted aristolochic acid I induced renal tubular epithelial cell apoptosis via mitochondrial pathway but alleviated nonapoptotic cell death in mouse acute aristolochic acid nephropathy model [J]. Apoptosis, 2014, 19 (8): 1215-1224.
|
[16] |
Matsui K, Kamijo-Ikemorif A, Sugaya T, et al. Renal liver-type fatty acid binding protein (L-FABP) attenuates acute kidney injury in aristolochic acid nephrotoxicity [J]. Am J Pathol, 2011, 178(3): 1021-1032.
|
[17] |
Wu J, Liu X, Fan J, et al. Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway [J]. Toxicology, 2014, 318: 22-31.
|
[18] |
Fougeray S, Pallet N. Mechanisms and biological functions of autophagy in diseased and ageing kidneys [J]. Nat Rev Nephrol, 2015, 11(1): 34-45.
|
[19] |
Zeng Y, Yang X, Wang J, et al. Aristolochic acid I induced autophagy extenuates cell apoptosis via ERK 1/2 pathway in renal tubular epithelial cells [J]. PLoS One, 2012, 7 (1): e30312.
|
[20] |
Yang CC, Wu CT, Chen LP, et al. Autophagy induction promotes aristolochic acid-I-induced renal injury in vivo and in vitro [J]. Toxicology, 2013, 312: 63-73.
|
[21] |
Li Y, Liu Z, Guo X, et al. Aristolochic acid I-induced DNA damage and cell cycle arrest in renal tubular epithelial cells in vitro [J]. Arch Toxicol, 2006, 80(8): 524-532.
|
[22] |
Yang L, Besschetnova TY, Brooks CR, et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury [J]. Nat Med, 2010, 16(5): 535-543.
|
[23] |
Jenkins RH, Davies LC, Taylor PR, et al. miR-192 induces G/M growth arrest in aristolochic acid nephropathy[J]. Am J Pathol, 2014, 184(4): 996-1009.
|
[24] |
Novitskaya T, Mcdermott L, Zhang KX, et al. A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury [J]. Am J Physiol Renal Physiol, 2014, 306 (5): 496-504.
|
[25] |
Zhou L, Fu P, Huang XR, et al. Mechanism of chronic aristolochic acid nephropathy: role of Smad3 [J]. Am J Physiol Renal Physiol, 2010, 298(4): 1006-1017.
|
[26] |
Liu M, Yang X, Fan J, et al. Altered tight junctions and fence function in NRK-52E cells induced by aristolochic acid [J]. Hum Exp Toxicol, 2012, 31 (1): 32-41.
|
[27] |
Campanholle G, Ligresti G, Gharib SA, et al. Cellular mechanisms of tissue fibrosis. 3. Novel mechanisms of kidney fibrosis [J]. Am J Physiol Cell Physiol, 2013, 304(7): C591-C603.
|
[28] |
Bai Y, Lu H, Hu L, et al. Effect of Sedum sarmentosum BUNGE extract on aristolochic acid-induced renal tubular epithelial cell injury [J]. J Pharmacol Sci, 2014, 124(4): 445-56.
|