切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2019, Vol. 08 ›› Issue (03) : 138 -141. doi: 10.3877/cma.j.issn.2095-3216.2019.03.008

所属专题: 文献

综述

微小RNA在糖尿病肾病中的作用机制研究进展
焦婷婷1, 韩秋霞2, 张冬3, 张有才4, 汤力3, 蔡广研3, 陈香美3, 朱晗玉3,()   
  1. 1. 100853 北京,解放军总医院第一医学中心肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室(2011DAV00088)、国家慢性肾病临床医学研究中心、肾脏疾病研究北京市重点实验室;454000 河南,新乡医学院焦作市人民医院肾内科
    2. 450052 河南,郑州大学第一附属医院肾脏病科、郑州大学肾脏病研究所、肾脏病重点实验室、河南省慢性病诊断与治疗重点实验室
    3. 100853 北京,解放军总医院第一医学中心肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室(2011DAV00088)、国家慢性肾病临床医学研究中心、肾脏疾病研究北京市重点实验室
    4. 454000 河南,新乡医学院焦作市人民医院肾内科
  • 收稿日期:2018-12-09 出版日期:2019-06-28
  • 通信作者: 朱晗玉
  • 基金资助:
    国家自然科学基金(61671479); 国家重点研发项目(2016YFC1305500); 中国人民解放军保健专项科研课题(15BJZ35)

Advances in research on the mechanism of microRNA in diabetic nephropathy

Tingting Jiao1, Qiuxia Han2, Dong Zhang3, Youcai Zhang4, Li Tang3, Guangyan Cai3, Xiangmei Chen3, Hanyu Zhu3,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, First Medical Center of Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853; Department of Nephrology, Jiaozuo City People′s Hospital, Xinxiang Medical University, Jiaozuo 454000, Henan Province
    2. Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology of Zhengzhou University, Key Laboratory of Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, Henan Province; China
    3. Department of Nephrology, Chinese PLA General Hospital, First Medical Center of Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853
    4. Department of Nephrology, Jiaozuo City People′s Hospital, Xinxiang Medical University, Jiaozuo 454000, Henan Province
  • Received:2018-12-09 Published:2019-06-28
  • Corresponding author: Hanyu Zhu
  • About author:
    Corresponding author: Zhu Hanyu, Email:
引用本文:

焦婷婷, 韩秋霞, 张冬, 张有才, 汤力, 蔡广研, 陈香美, 朱晗玉. 微小RNA在糖尿病肾病中的作用机制研究进展[J/OL]. 中华肾病研究电子杂志, 2019, 08(03): 138-141.

Tingting Jiao, Qiuxia Han, Dong Zhang, Youcai Zhang, Li Tang, Guangyan Cai, Xiangmei Chen, Hanyu Zhu. Advances in research on the mechanism of microRNA in diabetic nephropathy[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2019, 08(03): 138-141.

糖尿病肾病(DN)是糖尿病重要的微血管并发症之一,目前临床上缺乏可用于DN无创诊断的具有高度敏感性和特异性的诊断生物标志物。微小RNA(microRNA, miRNA)广泛存在于生物体中,在多种生理和病理过程均起关键作用,参与DN的发病机制。DN患者血液及尿液特异性miRNA的发现为寻找DN的诊断标志物提供了新的方向,将在DN的诊断及疾病严重程度评估中发挥重要的作用。

Diabetic nephropathy (DN) is one of the important microvascular complications of diabetes. Currently, there is a lack of highly sensitive and specific biodiagnostic markers for non-invasive diagnosis of DN. MicroRNAs (miRNAs) are widely present in organisms and play a key role in a variety of physiological and pathological processes, participating in the pathogenesis of DN. The discovery of blood- and urine-specific miRNAs in patients with DN provides a new direction for the search for diagnostic markers of DN, and will play an important role in the diagnosis of DN and the assessment of disease severity.

[1]
Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045 [J]. Diabetes Res Clin Pract, 2018, 138: 271-281.
[2]
Dewanjee S, Bhattacharjee N. MicroRNA: a new generation therapeutic target in diabetic nephropathy [J]. Biochem Pharmacol, 2018, 155: 32-47.
[3]
杨烽,张倩,郑宗基,等. MicroRNA在糖尿病肾病临床诊断中的应用与进展[J]. 现代诊断与治疗,2018,29(4):529-531.
[4]
邵晓娜,耿嘉男,胡彦武,等. microRNA与糖尿病肾病关系的探讨[J]. 中国实验诊断学,2015(11):1974-1976, 1977.
[5]
覃宁玲,盛德乔. microRNA与糖尿病肾病关系的研究进展[J]. 广东医学,2015(9):1446-1448.
[6]
Kato M, Wang M, Chen Z, et al. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy [J]. Nat Commun, 2016, 7: 12864.
[7]
冯罡,李军,王晓丽,等. 糖尿病肾病患者血清microRNA-21含量及其与氧化应激指标的相关性[J]. 中国现代医学杂志,2017,27(1):60-63.
[8]
Li H, Zhu X, Zhang J, et al. MicroRNA-25 inhibits high glucose-induced apoptosis in renal tubular epithelial cells via PTEN/AKT pathway [J]. Biomed Pharmacother, 2017, 96: 471-479.
[9]
Wan RJ, Li YH. MicroRNA146a/NAPDH oxidase4 decreases reactive oxygen species generation and inflammation in a diabetic nephropathy model [J]. Mol Med Rep, 2018, 17(3): 4759-4766.
[10]
Tsai YC, Kuo PL, Hung WW, et al. Angpt2 induces mesangial cell apoptosis through the microRNA-33-5p-SOCS5 loop in diabetic nephropathy [J]. Mol Ther Nucleic Acids, 2018, 13: 543-555.
[11]
Wang X, Lin B, Nie L, et al. MicroRNA-20b contributes to high glucose-induced podocyte apoptosis by targeting SIRT7 [J]. Mol Med Rep, 2017, 16(4): 5667-5674.
[12]
Qian X, Tan J, Liu L, et al. MicroRNA-134-5p promotes high glucose-induced podocyte apoptosis by targeting bcl-2 [J]. Am J Transl Res, 2018, 10(3): 989-997.
[13]
Chen X, Zhao L, Xing Y, et al. Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of TIMP3 expression [J]. Biomed Pharmacother, 2018, 108: 7-14.
[14]
Zhang SZ, Qiu XJ, Dong SS, et al. MicroRNA-770-5p is involved in the development of diabetic nephropathy through regulating podocyte apoptosis by targeting TP53 regulated inhibitor of apoptosis 1 [J]. Eur Rev Med Pharmacol Sci, 2019, 23(3): 1248-1256.
[15]
Zha F, Bai L, Tang B, et al. MicroRNA-503 contributes to podocyte injury via targeting E2F3 in diabetic nephropathy [J]. J Cell Biochem, 2019, 120(8): 12574-12581.
[16]
Yang Z, Guo Z, Dong J, et al. MiR-374a regulates inflammatory response in diabetic nephropathy by targeting MCP-1 expression [J]. Front Pharmacol, 2018, 9: 900.
[17]
Kaidonis G, Gillies MC, Abhary S, et al. A single-nucleotide polymorphism in the microRNA-146a gene is associated with diabetic nephropathy and sight-threatening diabetic retinopathy in Caucasian patients [J]. Acta Diabetol, 2016, 53(4): 643-650.
[18]
Chen HY, Zhong X, Huang XR, et al. MicroRNA-29b inhibits diabetic nephropathy in db/db mice [J]. Mol Ther, 2014, 22(4): 842-853.
[19]
Yao T, Zha D, Gao P, et al. MiR-874 alleviates renal injury and inflammatory response in diabetic nephropathy through targeting toll-like receptor-4 [J]. J Cell Physiol, 2018, 234(1): 871-879.
[20]
喻婧,毕敏,李冰. TGF-β调节的自噬与肾纤维化[J]. 中国中西医结合肾病杂志,2016(4):371-373.
[21]
Wang Y, Zheng ZJ, Jia YJ, et al. Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of diabetic kidney disease [J]. J Transl Med, 2018, 16(1): 146.
[22]
Deshpande S, Abdollahi M, Wang M, et al. Reduced autophagy by a microRNA-mediated signaling cascade in diabetes-induced renal glomerular hypertrophy [J]. Sci Rep, 2018, 8(1): 6954.
[23]
Zhang Y, Zhao S, Wu D, et al. MicroRNA-22 promotes renal tubulointerstitial fibrosis by targeting PTEN and suppressing autophagy in diabetic nephropathy [J]. J Diabetes Res, 2018, 2018: 4728645.
[24]
Xu XH, Ding DF, Yong HJ, et al. Resveratrol transcriptionally regulates miRNA-18a-5p expression ameliorating diabetic nephropathy via increasing autophagy [J]. Eur Rev Med Pharmacol Sci, 2017, 21(21): 4952-4965.
[25]
Zhang Z, Luo X, Ding S, et al. MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy [J]. FEBS Lett, 2012, 586(1): 20-26.
[26]
Li C, Lei T. Rs12976445 polymorphism is associated with risk of diabetic nephropathy through modulating expression of microRNA-125 and interleukin-6R [J]. Med Sci Monit, 2015, 21: 3490-3497.
[27]
Liu ZM, Zheng HY, Chen LH, et al. Low expression of miR-203 promoted diabetic nephropathy via increasing TLR4 [J]. Eur Rev Med Pharmacol Sci, 2018, 22(17): 5627-5634.
[28]
Zhang Y, Xiao HQ, Wang Y, et al. Differential expression and therapeutic efficacy of microRNA-346 in diabetic nephropathy mice [J]. Exp Ther Med, 2015, 10(1): 106-112.
[29]
Xu H, Sun F, Li X, et al. Down-regulation of miR-23a inhibits high glucose-induced EMT and renal fibrogenesis by up-regulation of SnoN [J]. Hum Cell, 2018, 31(1): 22-32.
[30]
Xue M, Li Y, Hu F, et al. High glucose up-regulates microRNA-34a-5p to aggravate fibrosis by targeting SIRT1 in HK-2 cells [J]. Biochem Biophys Res Commun, 2018, 498(1): 38-44.
[31]
Hou X, Tian J, Geng J, et al. MicroRNA-27a promotes renal tubulointerstitial fibrosis via suppressing PPARgamma pathway in diabetic nephropathy [J]. Oncotarget, 2016, 7(30): 47760-47776.
[32]
Ma Y, Shi J, Wang F, et al. MiR-130b increases fibrosis of HMC cells by regulating the TGF-beta1 pathway in diabetic nephropathy [J]. J Cell Biochem, 2019, 120(3): 4044-4056.
[33]
Yu Y, Bai F, Qin N, et al. Non-proximal renal tubule-derived urinary exosomal miR-200b as a biomarker of renal fibrosis [J]. Nephron, 2018, 139(3): 269-282.
[34]
Zhao B, Li H, Liu J, et al. MicroRNA-23b targets ras GTPase-activating protein SH3 domain-binding protein 2 to alleviate fibrosis and albuminuria in diabetic nephropathy [J]. J Am Soc Nephrol, 2016, 27(9): 2597-2608.
[35]
Maity S, Bera A, Ghosh-Choudhury N, et al. MicroRNA-181a downregulates deptor for TGFbeta-induced glomerular mesangial cell hypertrophy and matrix protein expression [J]. Exp Cell Res, 2018, 364(1): 5-15.
[36]
王晓莉,刘洁婷,张春雷,等. MicroRNA-25通过调控MAP2K4抑制糖尿病肾病纤维化的研究[J]. 医药导报,2015,34(4):425-431.
[37]
Sun Z, Ma Y, Chen F, et al. miR-133b and miR-199b knockdown attenuate TGF-beta1-induced epithelial to mesenchymal transition and renal fibrosis by targeting SIRT1 in diabetic nephropathy [J]. Eur J Pharmacol, 2018, 837: 96-104.
[38]
Wang G, Yan Y, Xu N, et al. Upregulation of microRNA-424 relieved diabetic nephropathy by targeting Rictor through mTOR complex2/protein kinase B signaling [J]. J Cell Physiol, 2019, 234(7): 11646-11653.
[39]
Mohan A, Singh RS, Kumari M, et al. Urinary exosomal microRNA-451-5p is a potential early biomarker of diabetic nephropathy in rats [J]. PLoS One, 2016, 11(4): e154055.
[40]
李鑫,范秋灵,汪旭,等. 2型糖尿病和糖尿病肾病患者血清微小RNA-148b-3p的水平变化及意义[J]. 中华肾脏病杂志,2018,34(5):348-354.
[41]
文利,彭睿,孙艳,等. microRNA let-7a-3基因甲基化与糖尿病肾病的关系[J]. 基础医学与临床,2016,36(4):474-479.
[42]
Chen ZR, He FZ, Liu MZ, et al. MIR4532 gene variant rs60432575 influences the expression of KCNJ11 and the sulfonylureas-stimulated insulin secretion [J]. Endocrine, 2018, 63(3): 489-496.
[43]
Park S, Moon S, Lee K, et al. Urinary and blood microRNA-126 and -770 are potential noninvasive biomarker candidates for diabetic nephropathy: a meta-analysis [J]. Cell Physiol Biochem, 2018, 46(4): 1331-1340.
[1] 于桐, 孙姗姗, 刘扬. 乳腺导管原位癌的浸润转化机制及临床病理特征[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 304-307.
[2] 李蓉. 薄型子宫内膜治疗新方法[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 591-591.
[3] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[4] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[5] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[6] 王庭宇, 邵联波, 刘珊, 沈振亚. Stanford A 型主动脉夹层相关基因KIF20A 的共表达网络构建及作用靶点分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 303-312.
[7] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[8] 王梦琪, 刘恒昌, 陈海鹏, 刘佳. 骶神经刺激治疗排便失禁的机制研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 417-422.
[9] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[10] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[11] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[12] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[13] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
[14] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
[15] 吴娟娟, 彭斌, 倪俊. 脑淀粉样血管病疾病修饰治疗研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 375-381.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?