[1] |
Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045 [J]. Diabetes Res Clin Pract, 2018, 138: 271-281.
|
[2] |
Dewanjee S, Bhattacharjee N. MicroRNA: a new generation therapeutic target in diabetic nephropathy [J]. Biochem Pharmacol, 2018, 155: 32-47.
|
[3] |
杨烽,张倩,郑宗基,等. MicroRNA在糖尿病肾病临床诊断中的应用与进展[J]. 现代诊断与治疗,2018,29(4):529-531.
|
[4] |
邵晓娜,耿嘉男,胡彦武,等. microRNA与糖尿病肾病关系的探讨[J]. 中国实验诊断学,2015(11):1974-1976, 1977.
|
[5] |
覃宁玲,盛德乔. microRNA与糖尿病肾病关系的研究进展[J]. 广东医学,2015(9):1446-1448.
|
[6] |
Kato M, Wang M, Chen Z, et al. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy [J]. Nat Commun, 2016, 7: 12864.
|
[7] |
冯罡,李军,王晓丽,等. 糖尿病肾病患者血清microRNA-21含量及其与氧化应激指标的相关性[J]. 中国现代医学杂志,2017,27(1):60-63.
|
[8] |
Li H, Zhu X, Zhang J, et al. MicroRNA-25 inhibits high glucose-induced apoptosis in renal tubular epithelial cells via PTEN/AKT pathway [J]. Biomed Pharmacother, 2017, 96: 471-479.
|
[9] |
Wan RJ, Li YH. MicroRNA146a/NAPDH oxidase4 decreases reactive oxygen species generation and inflammation in a diabetic nephropathy model [J]. Mol Med Rep, 2018, 17(3): 4759-4766.
|
[10] |
Tsai YC, Kuo PL, Hung WW, et al. Angpt2 induces mesangial cell apoptosis through the microRNA-33-5p-SOCS5 loop in diabetic nephropathy [J]. Mol Ther Nucleic Acids, 2018, 13: 543-555.
|
[11] |
Wang X, Lin B, Nie L, et al. MicroRNA-20b contributes to high glucose-induced podocyte apoptosis by targeting SIRT7 [J]. Mol Med Rep, 2017, 16(4): 5667-5674.
|
[12] |
Qian X, Tan J, Liu L, et al. MicroRNA-134-5p promotes high glucose-induced podocyte apoptosis by targeting bcl-2 [J]. Am J Transl Res, 2018, 10(3): 989-997.
|
[13] |
Chen X, Zhao L, Xing Y, et al. Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of TIMP3 expression [J]. Biomed Pharmacother, 2018, 108: 7-14.
|
[14] |
Zhang SZ, Qiu XJ, Dong SS, et al. MicroRNA-770-5p is involved in the development of diabetic nephropathy through regulating podocyte apoptosis by targeting TP53 regulated inhibitor of apoptosis 1 [J]. Eur Rev Med Pharmacol Sci, 2019, 23(3): 1248-1256.
|
[15] |
Zha F, Bai L, Tang B, et al. MicroRNA-503 contributes to podocyte injury via targeting E2F3 in diabetic nephropathy [J]. J Cell Biochem, 2019, 120(8): 12574-12581.
|
[16] |
Yang Z, Guo Z, Dong J, et al. MiR-374a regulates inflammatory response in diabetic nephropathy by targeting MCP-1 expression [J]. Front Pharmacol, 2018, 9: 900.
|
[17] |
Kaidonis G, Gillies MC, Abhary S, et al. A single-nucleotide polymorphism in the microRNA-146a gene is associated with diabetic nephropathy and sight-threatening diabetic retinopathy in Caucasian patients [J]. Acta Diabetol, 2016, 53(4): 643-650.
|
[18] |
Chen HY, Zhong X, Huang XR, et al. MicroRNA-29b inhibits diabetic nephropathy in db/db mice [J]. Mol Ther, 2014, 22(4): 842-853.
|
[19] |
Yao T, Zha D, Gao P, et al. MiR-874 alleviates renal injury and inflammatory response in diabetic nephropathy through targeting toll-like receptor-4 [J]. J Cell Physiol, 2018, 234(1): 871-879.
|
[20] |
喻婧,毕敏,李冰. TGF-β调节的自噬与肾纤维化[J]. 中国中西医结合肾病杂志,2016(4):371-373.
|
[21] |
Wang Y, Zheng ZJ, Jia YJ, et al. Role of p53/miR-155-5p/sirt1 loop in renal tubular injury of diabetic kidney disease [J]. J Transl Med, 2018, 16(1): 146.
|
[22] |
Deshpande S, Abdollahi M, Wang M, et al. Reduced autophagy by a microRNA-mediated signaling cascade in diabetes-induced renal glomerular hypertrophy [J]. Sci Rep, 2018, 8(1): 6954.
|
[23] |
Zhang Y, Zhao S, Wu D, et al. MicroRNA-22 promotes renal tubulointerstitial fibrosis by targeting PTEN and suppressing autophagy in diabetic nephropathy [J]. J Diabetes Res, 2018, 2018: 4728645.
|
[24] |
Xu XH, Ding DF, Yong HJ, et al. Resveratrol transcriptionally regulates miRNA-18a-5p expression ameliorating diabetic nephropathy via increasing autophagy [J]. Eur Rev Med Pharmacol Sci, 2017, 21(21): 4952-4965.
|
[25] |
Zhang Z, Luo X, Ding S, et al. MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy [J]. FEBS Lett, 2012, 586(1): 20-26.
|
[26] |
Li C, Lei T. Rs12976445 polymorphism is associated with risk of diabetic nephropathy through modulating expression of microRNA-125 and interleukin-6R [J]. Med Sci Monit, 2015, 21: 3490-3497.
|
[27] |
Liu ZM, Zheng HY, Chen LH, et al. Low expression of miR-203 promoted diabetic nephropathy via increasing TLR4 [J]. Eur Rev Med Pharmacol Sci, 2018, 22(17): 5627-5634.
|
[28] |
Zhang Y, Xiao HQ, Wang Y, et al. Differential expression and therapeutic efficacy of microRNA-346 in diabetic nephropathy mice [J]. Exp Ther Med, 2015, 10(1): 106-112.
|
[29] |
Xu H, Sun F, Li X, et al. Down-regulation of miR-23a inhibits high glucose-induced EMT and renal fibrogenesis by up-regulation of SnoN [J]. Hum Cell, 2018, 31(1): 22-32.
|
[30] |
Xue M, Li Y, Hu F, et al. High glucose up-regulates microRNA-34a-5p to aggravate fibrosis by targeting SIRT1 in HK-2 cells [J]. Biochem Biophys Res Commun, 2018, 498(1): 38-44.
|
[31] |
Hou X, Tian J, Geng J, et al. MicroRNA-27a promotes renal tubulointerstitial fibrosis via suppressing PPARgamma pathway in diabetic nephropathy [J]. Oncotarget, 2016, 7(30): 47760-47776.
|
[32] |
Ma Y, Shi J, Wang F, et al. MiR-130b increases fibrosis of HMC cells by regulating the TGF-beta1 pathway in diabetic nephropathy [J]. J Cell Biochem, 2019, 120(3): 4044-4056.
|
[33] |
Yu Y, Bai F, Qin N, et al. Non-proximal renal tubule-derived urinary exosomal miR-200b as a biomarker of renal fibrosis [J]. Nephron, 2018, 139(3): 269-282.
|
[34] |
Zhao B, Li H, Liu J, et al. MicroRNA-23b targets ras GTPase-activating protein SH3 domain-binding protein 2 to alleviate fibrosis and albuminuria in diabetic nephropathy [J]. J Am Soc Nephrol, 2016, 27(9): 2597-2608.
|
[35] |
Maity S, Bera A, Ghosh-Choudhury N, et al. MicroRNA-181a downregulates deptor for TGFbeta-induced glomerular mesangial cell hypertrophy and matrix protein expression [J]. Exp Cell Res, 2018, 364(1): 5-15.
|
[36] |
王晓莉,刘洁婷,张春雷,等. MicroRNA-25通过调控MAP2K4抑制糖尿病肾病纤维化的研究[J]. 医药导报,2015,34(4):425-431.
|
[37] |
Sun Z, Ma Y, Chen F, et al. miR-133b and miR-199b knockdown attenuate TGF-beta1-induced epithelial to mesenchymal transition and renal fibrosis by targeting SIRT1 in diabetic nephropathy [J]. Eur J Pharmacol, 2018, 837: 96-104.
|
[38] |
Wang G, Yan Y, Xu N, et al. Upregulation of microRNA-424 relieved diabetic nephropathy by targeting Rictor through mTOR complex2/protein kinase B signaling [J]. J Cell Physiol, 2019, 234(7): 11646-11653.
|
[39] |
Mohan A, Singh RS, Kumari M, et al. Urinary exosomal microRNA-451-5p is a potential early biomarker of diabetic nephropathy in rats [J]. PLoS One, 2016, 11(4): e154055.
|
[40] |
李鑫,范秋灵,汪旭,等. 2型糖尿病和糖尿病肾病患者血清微小RNA-148b-3p的水平变化及意义[J]. 中华肾脏病杂志,2018,34(5):348-354.
|
[41] |
文利,彭睿,孙艳,等. microRNA let-7a-3基因甲基化与糖尿病肾病的关系[J]. 基础医学与临床,2016,36(4):474-479.
|
[42] |
Chen ZR, He FZ, Liu MZ, et al. MIR4532 gene variant rs60432575 influences the expression of KCNJ11 and the sulfonylureas-stimulated insulin secretion [J]. Endocrine, 2018, 63(3): 489-496.
|
[43] |
Park S, Moon S, Lee K, et al. Urinary and blood microRNA-126 and -770 are potential noninvasive biomarker candidates for diabetic nephropathy: a meta-analysis [J]. Cell Physiol Biochem, 2018, 46(4): 1331-1340.
|