切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2021, Vol. 10 ›› Issue (06) : 333 -336. doi: 10.3877/cma.j.issn.2095-3216.2021.06.007

综述

SGLT2抑制剂在慢性肾脏病治疗中的作用研究进展
徐婷1, 苏朝江2, 刘俪婷1, 姜燕2, 陈彦2, 刘宗旸2,(), 张帅3   
  1. 1. 550004 贵阳,贵州医科大学研究生院
    2. 550003 贵阳,贵州医科大学附属肿瘤医院肾内科
    3. 550003 贵阳,贵州医科大学附属肿瘤医院实验室
  • 收稿日期:2021-08-24 出版日期:2021-12-28
  • 通信作者: 刘宗旸
  • 基金资助:
    贵州省卫生健康委科学技术基金项目(gzwkj2021-139)

Research progress on the role of SGLT2 inhibitors in the treatment of chronic kidney disease

Ting Xu1, Chaojiang Su2, Liting Liu1, Yan Jiang2, Yan Chen2, Zongyang Liu2,(), Shuai Zhang3   

  1. 1. Graduate School of Guizhou Medical University, Guiyang 550004
    2. Department of Nephrology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang 550003
    3. Laboratory of Affiliated Cancer Hospital of Guizhou Medical University, Guiyang 550003; Guizhou Province, China
  • Received:2021-08-24 Published:2021-12-28
  • Corresponding author: Zongyang Liu
引用本文:

徐婷, 苏朝江, 刘俪婷, 姜燕, 陈彦, 刘宗旸, 张帅. SGLT2抑制剂在慢性肾脏病治疗中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2021, 10(06): 333-336.

Ting Xu, Chaojiang Su, Liting Liu, Yan Jiang, Yan Chen, Zongyang Liu, Shuai Zhang. Research progress on the role of SGLT2 inhibitors in the treatment of chronic kidney disease[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2021, 10(06): 333-336.

慢性肾脏病(CKD)是严重危害人类健康和生命的常见病,具有较高的发病率以及死亡率。钠-葡萄糖共转运蛋白2(SGLT2)抑制剂是一类新型的口服降糖药,研究表明SGLT2抑制剂除具有降低血糖作用外,还可降低肌酐、蛋白尿从而保护肾脏功能,这为延缓CKD患者疾病进展带来新思路。本文就SGLT2抑制剂对CKD患者的保护作用及可能机制的研究进展进行总结,为SGLT2抑制剂治疗CKD的临床应用提供理论支持。

Chronic kidney disease (CKD) is a common disease that seriously endangers human health and life, with high morbidity and mortality. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new type of oral hypoglycemic agents. Studies have shown that SGLT2 inhibitors, in addition to lowering blood sugar, can also reduce creatinine and proteinuria to protect kidney function, which brings new ideas for delaying the disease progression of CKD patients. This article summarized the current research progress in the protective role and possible mechanism of SGLT2 in CKD, so as to provide theoretical support for the clinical application of SGLT2 inhibitors in the treatment of chronic kidney disease.

图1 SGLT2抑制剂的肾脏保护作用
[1]
GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J]. Lancet, 2020, 395(10225): 709-733.
[2]
Heerspink HJ, Desai M, Jardine M, et al. Canagliflozin slows progression of renal function decline independently of glycemic effects [J]. J Am Soc Nephrol, 2017, 28(1): 368-375.
[3]
Alicic RZ, Johnson EJ, Tuttle KR. SGLT2 inhibition for the prevention and treatment of diabetic kidney disease: a review [J]. Am J Kidney Dis, 2018, 72(2): 267-277.
[4]
Chung S, Kim GH. Use of anti-diabetic agents in non-diabetic kidney disease: from bench to bedside [J]. Life (Basel), 2021, 11(5): 389.
[5]
Wheeler DC, Toto RD, Stefánsson BV, et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy [J]. Kidney Int, 2021, 100(1): 215-224.
[6]
Boeckhaus J, Gross O. Sodium-glucose cotransporter-2 inhibitors in patients with hereditary podocytopathies, Alport syndrome, and FSGS: a case series to better plan a large-scale study [J]. Cells, 2021, 10(7): 1815.
[7]
Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes [J]. N Engl J Med, 2016, 375(4): 323-334.
[8]
Perkovic V, De Zeeuw D, Mahaffey KW, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS program randomised clinical trials [J]. Lancet Diabetes Endocrinol, 2018, 6(9): 691-704.
[9]
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes [J]. N Engl J Med, 2019, 380(4): 347-357.
[10]
Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials [J]. Lancet, 2019, 393(10166): 31-39.
[11]
Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy [J]. N Engl J Med, 2019, 380(24): 2295-2306.
[12]
Heerspink HJL, Stefansson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease [J]. N Engl J Med, 2020, 383(15): 1436-1446.
[13]
Herrington WG, Preiss D, Haynes R, et al. The potential for improving cardio-renal outcomes by sodium-glucose co-transporter-2 inhibition in people with chronic kidney disease: a rationale for the EMPA-KIDNEY study [J]. Clin Kidney J, 2018, 11(6): 749-761.
[14]
Kobayashi K, Toyoda M, Hatori N, et al. Retrospective analysis of the renoprotective effects of long-term use of six types of sodium-glucose cotransporter 2 inhibitors in Japanese patients with type 2 diabetes mellitus and chronic kidney disease [J]. Diabetes Technol Ther, 2021, 23(2): 110-119.
[15]
Wan N, Rahman A, Hitomi H, et al. The effects of sodium-glucose cotransporter 2 inhibitors on sympathetic nervous activity [J]. Front Endocrinol, 2018, 9: 421.
[16]
Packer M. Role of impaired nutrient and oxygen deprivation signaling and deficient autophagic flux in diabetic CKD development: implications for understanding the effects of sodium-glucose cotransporter 2-inhibitors [J]. J Am Soc Nephrol, 2020, 31(5): 907-919.
[17]
Heerspink HJL, Perco P, Mulder S, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease [J]. Diabetologia, 2019, 62(7): 1154-1166.
[18]
Hussain M, Elahi A, Hussain A, et al. Sodium-glucose cotransporter-2 (SGLT-2) attenuates serum uric acid (SUA) level in patients with type 2 diabetes [J]. J Diabetes Res, 2021, 2021: 9973862.
[19]
Herat LY, Magno AL, Rudnicka C, et al. SGLT2 inhibitor-induced sympathoinhibition: a novel mechanism for cardiorenal protection [J]. JACC Basic Transl Sci, 2020, 5(2): 169-179.
[20]
Kaushal GP, Chandrashekar K, Juncos LA. Molecular interactions between reactive oxygen species and autophagy in kidney disease [J]. Int J Mol Sci, 2019, 20(15): 3791.
[21]
Terami N, Ogawa D, Tachibana H, et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice [J]. PLoS One, 2014, 9(6): e100777.
[22]
Udwan K, Abed A, Roth I, et al. Dietary sodium induces a redistribution of the tubular metabolic workload [J]. J Physiol, 2017, 595(22): 6905-6922.
[23]
Huang DY, Gao H, Boini KM, et al. In vivo stimulation of AMP-activated protein kinase enhanced tubuloglomerular feedback but reduced tubular sodium transport during high dietary NaCl intake [J]. Pflugers Arch, 2010, 460(1): 187-196.
[24]
Uthman L, Homayr A, Juni RP, et al. Empagliflozin and dapagliflozin reduce ROS generation and restore NO bioavailability in tumor necrosis factor α-stimulated human coronary arterial endothelial cells [J]. Cell Physiol Biochem, 2019, 53(5): 865-886.
[25]
Li L, Yang C, Zhao Y, et al. Is hyperuricemia an independent risk factor for new-onset chronic kidney disease? A systematic review and meta-analysis based on observational cohort studies [J]. BMC Nephrol, 2014, 15: 122.
[26]
Chino Y, Samukawa Y, Sakai S, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria [J]. Biopharm Drug Dispos, 2014, 35(7): 391-404.
[27]
郑淑芬,钟诗龙. SGLT2抑制剂不良反应信号的挖掘与评价[J]. 中国药房2021, 32(8): 986-990.
[28]
Heerspink HJL, Oshima M, Zhang H, et al. Canagliflozin and kidney-related adverse events in type 2 diabetes and CKD: findings from the randomized CREDENCE trial [J]. Am J Kidney Dis, 2021, Epub ahead of print.
[29]
王翔宇,张倩,薛耀明. SGLT2抑制剂与肾脏安全性[J]. 中国实用内科杂志2020, 40(8): 634-637.
[30]
Ye Y, Zhao C, Liang J, et al. Effect of sodium-glucose co-transporter 2 inhibitors on bone metabolism and fracture risk [J]. Front Pharmacol, 2018, 9: 1517.
[31]
Tang H, Dai Q, Shi W, et al. SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials [J]. Diabetologia, 2017, 60(10): 1862-1872.
[32]
Fitchett D. A safety update on sodium glucose co-transporter 2 inhibitors [J]. Diabetes Obes Metab, 2019, 21(Suppl 2): 34-42.
[1] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[2] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国肝移植受者肾损伤管理临床实践指南(2023版)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 276-288.
[3] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[4] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[5] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[6] 王小龙, 吴杰, 段姝伟, 王超卉, 潘娜, 白圆圆, 李航天, 蔡广研. 不同等级体力活动对慢性肾脏病患者预后的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 121-128.
[7] 张轶男, 朱国贞. 急性肾损伤向慢性肾脏病转变研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 106-112.
[8] 吴燕升, 张先闻, 王琳. 慢性肾脏病患者肠道微生态与免疫的关系研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 101-105.
[9] 肖伍豪, 刘抗寒. 晚期慢性肾脏病患者骨质疏松症的治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 92-96.
[10] 洪权. 肾脏疾病中的代谢重编程:新机制与新的治疗机会[J/OL]. 中华肾病研究电子杂志, 2024, 13(01): 60-60.
[11] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
[12] 韦美菊, 潘玲. 肠道菌群-胆汁酸代谢轴在慢性肾脏病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 219-222.
[13] 袁蔡骏, 闻萍, 徐玲玲. 连续血糖监测在慢性肾脏病合并糖尿病患者中的应用研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(01): 79-82.
[14] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J/OL]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[15] 罗婷, 邱令智, 易东, 鄢华. 线粒体功能障碍与心血管疾病、缺血性脑卒中及慢性肾脏病关系的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 60-63.
阅读次数
全文


摘要