切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (02) : 94 -98. doi: 10.3877/cma.j.issn.2095-3216.2022.02.008

综述

微小RNA在急性肾损伤中的作用
冯新园1, 乔晞1,()   
  1. 1. 030001 太原,山西医科大学第二医院、山西省肾脏病研究所、山西医科大学肾脏病研究所
  • 收稿日期:2021-11-11 出版日期:2022-04-28
  • 通信作者: 乔晞
  • 基金资助:
    山西省回国留学人员科研资助项目(2020-186); 山西省留学回国人员科技活动择优资助项目(2017-29)

Role of microRNA in acute kidney injury

Xinyuan Feng1, Xi Qiao1,()   

  1. 1. Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Provincial Institute for Kidney Disease, Kidney Disease Institute of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2021-11-11 Published:2022-04-28
  • Corresponding author: Xi Qiao
引用本文:

冯新园, 乔晞. 微小RNA在急性肾损伤中的作用[J/OL]. 中华肾病研究电子杂志, 2022, 11(02): 94-98.

Xinyuan Feng, Xi Qiao. Role of microRNA in acute kidney injury[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(02): 94-98.

急性肾损伤(AKI)是多种原因引起肾功能短期快速下降所导致的临床综合征,患病率及死亡率高,深入研究AKI的调控机制对于改善其预后非常重要。微小RNA(miRNA)是内源性的短链非编码RNA,可通过影响靶mRNA的转录后活性来调控细胞的增殖、分化、代谢和凋亡等生物学功能。现已发现,miRNAs在各种人类疾病中发挥着重要作用。一些miRNAs通过促进炎症、凋亡和纤维化而在AKI中具有致病作用,而另一些miRNAs则具有抗炎、抗凋亡、抗纤维化和促血管生成的肾脏保护作用。所以,miRNAs不仅是AKI的新型生物标志物,还有望成为潜在的治疗靶点。本文综述了miRNA在AKI中的作用研究进展。

Acute kidney injury (AKI) is a clinical syndrome caused by short-term rapid decline of renal function due to various causes, with high morbidity and mortality. In-depth study of the regulatory mechanism of AKI is very important for improving its prognosis. MicroRNAs (miRNAs) are endogenous short-chain non-coding RNAs that can regulate biological functions such as cellular proliferation, differentiation, metabolism, and apoptosis by affecting the post-transcriptional activity of target mRNAs. It has been found that miRNAs play important roles in various human diseases. Some miRNAs have pathogenic roles in AKI by promoting inflammation, apoptosis, and fibrosis, while others have renoprotective effects by inhibition of inflammation, apoptosis, and fibrosis as well as promotion of angiogenesis. Thus, miRNAs have not only emerged as novel biomarkers for AKI, but also held promise to be potential therapeutic targets. This review summarized the research progress on the role of miRNAs in AKI.

图1 miRNA参与AKI机制注:HIF-1:hypoxia-inducible factor-1,缺氧诱导因子1;PARP1:polyadenosine diphosphate-ribose polymerase 1,聚二磷酸腺苷核糖聚合酶1;MTP18:mitochondrial protein 18,线粒体蛋白18;Mfn2:mitofusin 2,线粒体融合蛋白2;IL-6:白细胞介素6;Treg:regulatory T cells,调节性T细胞;NF-κB:nuclear factor-κB,核因子κB;CXCL8:C-X-C motif chemokine ligand 8, C-X-C基序趋化因子配体8;TPCA1:2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide-1, 2-[(氨基羰基)氨基]-5-(4-氟苯基)-3-噻吩甲酰胺;NF-κBIZ:nuclear factor-κB inhibitor zeta,核因子κB的Zeta抑制因子;Hnf1β:hepatocyte nuclear factor-1β,肝细胞核因子1β;ZEB1:zinc finger E-box-binding homeobox 1,E盒结合同源框锌指蛋白1;TFAM:mitochondrial transcriptional factor A,线粒体转录因子A;IRAK1:interleukin-1 receptor-associated kinase,白细胞介素-1受体相关激酶
[1]
Liu Z, Yang D, Gao J, et al. Discovery and validation of miR-452 as an effective biomarker for acute kidney injury in sepsis [J]. Theranostics, 2020, 10(26): 11963-11975.
[2]
Susantitaphong P, Cruz DN, Cerda J, et al. World incidence of AKI: a meta-analysis [J]. Clin J Am Soc Nephrol, 2013, 8(9): 1482-1493.
[3]
Hao J, Lou Q, Wei Q, et al. MicroRNA-375 is induced in cisplatin nephrotoxicity to repress hepatocyte nuclear factor 1-β [J]. J Biol Chem, 2017, 292(11): 4571-4582.
[4]
Liu B, Chai Y, Guo W, et al. MicroRNA-188 aggravates contrast-induced apoptosis by targeting SRSF7 in novel isotonic contrast-induced acute kidney injury rat models and renal tubular epithelial cells [J]. Ann Transl Transl Med, 2019, 7(16): 378.
[5]
Shen Y, Yu J, Jing Y, et al. MiR-106a aggravates sepsis-induced acute kidney injury by targeting THBS2 in mice model [J]. Acta Cir Bras, 2019, 34(6): e201900602.
[6]
Xiong X, Tang B, Ji T, et al. Ameliorative effects of miR-186 on cisplatin-triggered acute kidney injury via targeting ZEB1 [J]. Am J Transl Res, 2021, 13(5): 4296-4308.
[7]
Wei Q, Liu Y, Liu P, et al. MicroRNA-489 induction by hypoxia-inducible factor-1 protects against ischemic kidney injury [J]. J Am Soc Nephrol, 2016, 27(9): 2784-2796.
[8]
Zhang Y, Xia F, Wu J, et al. MiR-205 influences renal injury in sepsis rats through HMGB1-PTEN signaling pathway [J]. Eur Rev Med Pharmacol Sci, 2019, 23(24): 10950-10956.
[9]
Wang X, Wang Y, Kong M, et al. MiR-22-3p suppresses sepsis-induced acute kidney injury by targeting PTEN [J]. Biosci Rep, 2020, 40(6): BSR20200527.
[10]
Lan YF, Chen HH, Lai PF, et al. MicroRNA-494 reduces ATF3 expression and promotes AKI [J]. J Am Soc Nephrol, 2012, 23(12): 2012-2023.
[11]
Liao W, Fu Z, Zou Y, et al. MicroRNA-140-5p attenuated oxidative stress in cisplatin induced acute kidney injury by activating Nrf2/ARE pathway through a Keap1-independent mechanism [J]. Exp Cell Res, 2017, 360(2): 292-302.
[12]
Pan JS, Sheikh-Hamad D. Mitochondrial dysfunction in acute kidney injury and sex-specific implications [J]. Med Res Arch, 2019, 7(2): 10.18103/mra.v7i2.1898.
[13]
Sun J, Zhang J, Tian J, et al. Mitochondria in sepsis-induced AKI [J]. J Am Soc Nephrol, 2019, 30(7): 1151-1161.
[14]
Yan Y, Ma Z, Zhu J, et al. miR-214 represses mitofusin-2 to promote renal tubular apoptosis in ischemic acute kidney injury [J]. Am J Physiol Renal Physiol, 2020, 318(4): F878-F887.
[15]
Wei Q, Sun H, Song S, et al. MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury [J]. J Clin Invest, 2018, 128(12): 5448-5464.
[16]
Guo Y, Ni J, Chen S, et al. MicroRNA-709 mediates acute tubular injury through effects on mitochondrial function [J]. J Am Soc Nephrol, 2018, 29(2): 449-461.
[17]
Yue J, Si Y, Zhu T, et al. MicroRNA-187 reduces acute ischemic renal podocyte injury via targeting acetylcholinesterase [J]. J Surg Res, 2019, 244: 302-311.
[18]
Aguado-Fraile E, Ramos E, Conde E, et al. A pilot study identifying a set of microRNAs as precise diagnostic biomarkers of acute kidney injury [J]. PLoS One, 2015, 10(6): e0127175.
[19]
Sun SQ, Zhang T, Ding D, et al. Circulating microRNA-188, -30a, and -30e as early biomarkers for contrast-induced acute kidney injury [J]. J Am Heart Assoc, 2016, 5(8): e004138.
[20]
Gutiérrez-Escolano A, Santacruz-Vázquez E, Gómez-Pérez F. Dysregulated microRNAs involved in contrast-induced acute kidney injury in rat and human [J]. Ren Fail, 2015, 37(9): 1498-1506.
[21]
Shihana F, Barron ML, Mohamed F, et al. MicroRNAs in toxic acute kidney injury: systematic scoping review of the current status [J]. Pharmacol Res Perspect, 2021, 9(2): e00695.
[22]
Lin Y, Ding Y, Song S, et al. Expression patterns and prognostic value of miR-210, miR-494, and miR-205 in middle-aged and old patients with sepsis-induced acute kidney injury [J]. Bosn J Basic Med Sci, 2019, 19(3): 249-256.
[23]
Zhang H, Che L, Wang Y, et al. Deregulated microRNA-22-3p in patients with sepsis-induced acute kidney injury serves as a new biomarker to predict disease occurrence and 28-day survival outcomes [J]. Int Urol Nephrol, 2021, 53(10): 2107-2116.
[24]
Huo R, Dai M, Fan Y, et al. Predictive value of miRNA-29a and miRNA-10a-5p for 28-day mortality in patients with sepsis-induced acute kidney injury [J]. Nan Fang Yi Ke Da Xue Xue Bao, 2017, 37(5): 646-651.
[25]
Zhu G, Pei L, Lin F, et al. Exosomes from human-bone-marrow-derived mesenchymal stem cells protect against renal ischemia/reperfusion injury via transferring miR-199a-3p [J]. J Cell Physiol, 2019, 234(12): 23736-23749.
[26]
Qin Y, Wang G, Peng Z. MicroRNA-191-5p diminished sepsis-induced acute kidney injury through targeting oxidative stress responsive 1 in rat models [J]. Biosci Rep, 2019, 39(8): BSR20190548.
[1] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[2] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[3] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[4] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[5] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[6] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国肝移植受者肾损伤管理临床实践指南(2023版)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 276-288.
[7] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[8] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[9] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[10] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[11] 肖增丽, 杜安琪, 孙瑶, 赵慧颖, 安友仲. 脑出血术后AKI发生的危险因素分析及预测模型建立[J/OL]. 中华重症医学电子杂志, 2024, 10(02): 157-163.
[12] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[13] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[14] 崔秋子, 姚红曼, 艾迎春. 监测NLR、PLR、CAR、白蛋白、血钙及血糖指标水平对急性胰腺炎患者急性肾损伤的预测价值分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 244-248.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要