[1] |
Cheng B, Jin Y, Liu G, et al. Urinary N-acetyl-beta-D-glucosaminidase as an early marker for acute kidney injury in full-term newborns with neonatal hyperbilirubinemia [J]. Dis Markers, 2014, 2014: 315843.
|
[2] |
和东阳,张迎辉,吴跃伟. 尿胱抑素C、肾损伤分子-1及中性粒细胞明胶酶相关脂质运载蛋白在高胆红素血症早产儿早期肾损伤诊断中的价值[J]. 新乡医学院学报,2018, 35(5): 385-388, 392.
|
[3] |
欧阳向东,彭华保,邝晓敏,等. 高未结合胆红素血症新生儿血和尿胱抑素C水平变化分析[J]. 中国新生儿科杂志,2016, 31(3): 168-172.
|
[4] |
王惠颖,苏敏,高翔羽,等.高胆红素血症对早期新生儿肾功能指标的影响[J]. 中华新生儿科杂志,2021, 36(1): 20-25.
|
[5] |
贾晓君,阴怀清,曹芳芳,等. 高胆红素血症及胆红素脑病新生大鼠模型的建立与评价[J]. 中西医结合心脑血管病杂志,2018, 16(15): 2142-2145.
|
[6] |
Watchko JF. Neonatal indirect hyperbilirubinemia and kernicterus [M]. In: Gleason CA, Juul SE. Avery′s Diseases of the Newborn. 10th ed. Philadelphia: Elsevier, 2018: 1198-1218.
|
[7] |
Rawat V, Bortolussi G, Gazzin S, et al. Bilirubin-induced oxidative stress leads to DNA damage in the cerebellum of hyperbilirubinemic neonatal mice and activates DNA double-strand break repair pathways in human cells [J]. Oxid Med Cell Longev, 2018, 2018: 1801243.
|
[8] |
Odell GB, Natzschka JC, Storey GN. Bilirubin nephropathy in the Gunn strain of rat [J]. Am J Physiol, 1967, 212(4): 931-938.
|
[9] |
Şimşek N, Altunkaynak BZ, Ünal D, et al. A stereological and electron microscopic study of the development of the nephron in prenatal and postnatal rats [J]. Eurasian J Med, 2009, 41(2): 84-90.
|
[10] |
Ryan D, Sutherland MR, Flores TJ, et al. Development of the human fetal kidney from mid to late gestation in male and female infants [J]. EBioMedicine, 2018, 27: 275-283.
|
[11] |
骆娟,陈昌辉,梁小明,等. 静脉注入胆红素对新生大鼠脾髓样分化因子88和白细胞介素1受体相关激酶-4蛋白表达的影响[J]. 中国小儿急救医学,2015, 22(10): 699-703.
|
[12] |
Amini N, Vousooghi N, Soleimani M, et al. A new rat model of neonatal bilirubin encephalopathy (kernicterus) [J]. J Pharmacol Toxicol Methods, 2017, 84: 44-50.
|
[13] |
李永富,马月兰,聂玲,等. 新生猪溶血性黄疸模型的制备与验证[J]. 中国当代儿科杂志,2016, 18(5): 431-434.
|
[14] |
Waddell J, He M, Tang N, et al. A Gunn rat model of preterm hyperbilirubinemia [J]. Pediatr Res, 2020, 87(3): 480-484.
|
[15] |
杨李,吴德,唐久来. 新生儿高胆红素血症动物模型研究进展[J]. 中国比较医学杂志,2015, 25(9): 78-80.
|
[16] |
Zhang Y, Zhang B, Wang D, et al. Evaluation of novel biomarkers for early diagnosis of acute kidney injury in asphyxiated full-term newborns: a case-control study [J]. Med Princ Pract, 2020, 29(3): 285-291.
|
[17] |
Kamianowska M, Wasilewska A, Szczepański M, et al. Health term-born girls had higher levels of urine neutrophil gelatinase-associated lipocalin than boys during the first postnatal days [J]. Acta Paediatr, 2016, 105(9): 1105-1108.
|
[18] |
Zwiers AJ, de Wildt SN, van Rosmalen J, et al. Urinary neutrophil gelatinase-associated lipocalin identifies critically ill young children with acute kidney injury following intensive care admission: a prospective cohort study [J]. Crit Care, 2015, 19(1): 181.
|
[19] |
Sweetman DU. Neonatal acute kidney injury-severity and recovery prediction and the role of serum and urinary biomarkers [J]. Early Hum Dev, 2017, 105: 57-61.
|
[20] |
Stojanovic VD, Barišic NA, Vuckovic NM, et al. Urinary kidney injury molecule-1 rapid test predicts acute kidney injury in extremely low-birth-weight neonates [J]. Pediatr Res, 2015, 78(4): 430-435.
|
[21] |
Yang Y, Li SJ, Pan JJ, et al. Reference values for serum cystatin C in very low-birthweight infants: from two centres of China [J]. J Paediatr Child Health, 2018, 54(3): 284-288.
|
[22] |
Kisiel A, Roszkowska-Blaim M, Pańczyk-Tomaszewska M, et al. Effect of perinatal risk factors on neutrophil gelatinase-associated lipocalin (NGAL) level in umbilical and peripheral blood in neonates [J]. Cent Eur J Immunol, 2017, 42(3): 274-280.
|