切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2012, Vol. 01 ›› Issue (01) : 41 -44. doi: 10.3877/cma.j.issn.2095-3216.2012.01.010

综述

microRNA调控慢性肾脏病小管间质纤维化研究进展
文枫1, 陈国纯1, 刘伏友1,   
  1. 1.410011 长沙,中南大学湘雅二医院肾内科 中南大学肾脏病研究所 肾脏疾病与血液净化学(湖南省)重点实验室
  • 收稿日期:2012-06-04 出版日期:2012-10-18
  • 通信作者: 刘伏友
  • 基金资助:
    国家自然科学基金(81070610)

mircroRNA-mediated tubularinterstitial fibrosis in chronic kidney disease

Feng WEN1, Guo-chun CHEN1, Fu-you LIU1,   

  1. 1.Department of Nephropathy, the Second Xiangya Hospital of Central South University, Renal Institute of Central South University, State Key Laboratory of Kidney Disease and Dialysis of Hunan Province, Changsha 410011, China
  • Received:2012-06-04 Published:2012-10-18
  • Corresponding author: Fu-you LIU
引用本文:

文枫, 陈国纯, 刘伏友. microRNA调控慢性肾脏病小管间质纤维化研究进展[J/OL]. 中华肾病研究电子杂志, 2012, 01(01): 41-44.

Feng WEN, Guo-chun CHEN, Fu-you LIU. mircroRNA-mediated tubularinterstitial fibrosis in chronic kidney disease[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2012, 01(01): 41-44.

慢性肾脏病已成为中国重要的公共卫生问题。肾脏纤维化是慢性肾脏病进行性发展的最终结局。小分子RNA作为近年来发现的一组长度约 22个核苷酸的内源性小分子,其在肾脏发育和生理功能中有普遍作用。越来越多的报道认为多种小分子RNA参与调控肾小管上皮细胞间充质转分化过程,在肾脏纤维化过程中发挥重要作用,可能是慢性肾脏病早期干预治疗的潜在靶点。

Chronic kidney disease has been a severe public problem in China. Renal fibrosis is the final outcome for progressive chronic kidney disease. MicroRNAs (miRNAs, miR) are small, noncoding RNAs with about 22 nucleotides, which has proved to play a general role in kidney development and physiological functions. Reports showed that series of miRNA took part in mediating the process of tubular epithelial-mesenchymal transition, leading to renal fibrosis. MiRNA could be a potential therapeutic target for early chronic kidney disease.

1
Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet, 2012,379(9818): 815-822.
2
Reinhart BJ, Bartel DP. Small RNAs correspond to centromere heterochromatic repeats [J]. Science, 2002, 297(5588): 1831.
3
Wang Y, Stricker HM, Gou D, et al. MicroRNA: past and present[J]. Front Biosci, 2007, 12: 2316-2329.
4
Shi S, Yu L, Chiu C, et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis [J]. J Am Soc Nephrol,2008, 19(11): 2159-2169.
5
Harvey SJ, Jarad G, Cunningham J, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease [J]. J Am Soc Nephrol, 2008, 19(11): 2150-2158.
6
Ho J, Ng KH, Rosen S, et al. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury [J]. J Am Soc Nephrol, 2008, 19(11): 2069-2075.
7
Chandrasekaran K, Karolina DS, Sepramaniam S, et al. Role of microRNAs in kidney homeostasis and disease [J]. Kidney Int,2012, 81(7): 617-627.
8
Wei Q, Bhatt K, He HZ, et al. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury [J]. J Am Soc Nephrol, 2010, 21(5): 756-761.
9
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition [J]. J Clin Invest, 2009, 119(6): 1420-1428.
10
Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition(EMT) in kidney fibrosis: fact or fantasy [J]. J Clin Invest, 2011,121(2): 468-474.
11
Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis [J]. J Am Soc Nephrol, 2010, 21(2): 212-222.
12
Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells [J]. J Cell Biol, 1982, 95(1): 333-339.
13
Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis:pathologic significance, molecular mechanism, and therapeutic intervention [J]. J Am Soc Nephrol, 2004, 15(1): 1-12.
14
Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease [J]. Cell, 2009, 139(5):871-890.
15
Lopez-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression [J]. EMBO Mol Med, 2009, 1(6/7): 303-314.
16
Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis [J]. Am J Pathol, 2001, 159(4): 1465-1475.
17
Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis [J]. J Clin Invest, 2003, 112(12): 1776-1784.
18
Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells [J]. J Clin Invest, 2009, 119(6): 1417-b1419.
19
Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion [J]. Mol Cell, 2001, 7(6): 1267-1278.
20
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 [J]. Nat Cell Biol, 2008, 10(5): 593-601.
21
Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors [J]. Proc Natl Acad Sci U S A, 2007, 104(9): 3432-3437.
22
Chung AC, Huang XR, Meng X, et al. miR-192 mediates TGFbeta/Smad3-driven renal fibrosis [J]. J Am Soc Nephrol, 2010,21(8): 1317-1325.
23
Du R, Sun W, Xia L, et al. Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells [J]. PLoS One, 2012, 7(2):e30771.
24
Kong W, Yang H, He L, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA [J]. Mol Cell Biol,2008, 28(22): 6773-6784.
25
Humphreys BD, Lin SL, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis [J]. Am J Pathol, 2010, 176(1): 85-97.
26
Tian Z, Greene AS, Pietrusz JL, et al. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis [J]. Genome Res, 2008, 18(3): 404-411.
27
Krupa A, Jenkins R, Luo DD, et al. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy [J]. J Am Soc Nephrol, 2010, 21(3): 438-447.
28
Wang B, Herman-Edelstein M, Koh P, et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta [J].Diabetes, 2010, 59(7): 1794-1802.
29
Oba S, Kumano S, Suzuki E, et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis [J]. PLoS One, 2010,5(10): e13614.
30
Wang B, Koh P, Winbanks C, et al. miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression [J].Diabetes, 2011, 60(1): 280-287.
31
Liu Y, Taylor NE, Lu L, et al. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes [J]. Hypertension, 2010, 55(4): 974-982.
32
Qin W, Chung AC, Huang XR, et al. TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29 [J]. J Am Soc Nephrol, 2011, 22(8): 1462-1474.
33
Kantharidis P, Wang B, Carew RM, et al. Diabetes complications:the microRNA perspective [J]. Diabetes, 2011, 60(7): 1832-1837.
34
Kato M, Wang L, Putta S, et al. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-{beta}-induced collagen expression in kidney cells [J]. J Biol Chem,2010, 285(44): 34004-34015.
35
Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection [J]. Proc Natl Acad Sci U S A, 2008, 105(30): 10513-10518.
36
Hanke M, Hoefig K, Merz H, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer [J]. Urol Oncol, 2010, 28(6): 655-661.
37
Casalini P, Iorio MV. MicroRNAs and future therapeutic applications in cancer [J]. J BUON, 2009, 14 Suppl 1: S17-22.
38
Anglicheau D, Sharma VK, Ding R, et al. MicroRNA expression profiles predictive of human renal allograft status [J]. Proc Natl Acad Sci U S A, 2009, 106(13): 5330-5335.
39
Dai Y, Sui W, Lan H, et al. Microarray analysis of microribonucleic acid expression in primary immunoglobulin A nephropathy [J]. Saudi Med J, 2008, 29(10): 1388-1393.
40
van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis [J]. Proc Natl Acad Sci U S A, 2008, 105(35):13027-13032.
41
Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts [J]. Nature, 2008, 456(7224): 980-984.
[1] 魏艺, 周羽西, 杨烨, 凌秀凤, 赵纯. 微小RNA对子宫内膜容受性影响的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 266-270.
[2] 李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 181-185.
[3] 王亚岚, 倪婧, 余世庆, 陶银花, 张荣. 尼达尼布抗纤维化治疗特发性肺纤维化的耐受性和疗效预测因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 750-755.
[4] 周璇, 谢莉, 邹娟. 尼达尼布对特发性肺纤维化肺功能、肺纤维化程度及PDGF、PGE2、TGF-β1的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 368-372.
[5] 梅杰, 徐瑞, 蔡芸, 朱一超. 纤维化对肿瘤浸润免疫细胞的影响——“硬冷肿瘤”的形成[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 257-263.
[6] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[7] 翟航, 张广权, 吴芳芳, 史宪杰. 非编码RNA调控胰腺纤维化研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 583-587.
[8] 陈意志. 核磁共振钆造影剂导致的肾源性系统性纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 358-358.
[9] 孙婧婷, 李娜, 罗明辉, 高瑶瑶, 白义行, 朱国贞. 短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 181-187.
[10] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[11] 周慧杰, 张云龙. 基于数据挖掘技术分析肾纤维化的中医病机与治法[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 152-160.
[12] 王静, 丁红. 益肾化湿颗粒对慢性肾衰竭大鼠肾组织转化生长因子-β1、α-平滑肌肌动蛋白表达的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 161-165.
[13] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[14] 谭欣, 王鹏源, 胡良皞. 慢性胰腺炎抗炎和抗纤维化治疗的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 289-296.
[15] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?