切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2013, Vol. 02 ›› Issue (02) : 98 -102. doi: 10.3877/cma.j.issn.2095-3216.2013.02.010

综述

肾小管上皮-间充质转化的研究现状
李旭艳1, 谢院生1,(), 陈香美1   
  1. 1.100853 北京,解放军总医院肾脏病科 全军肾脏病研究所 肾脏疾病国家重点实验室
  • 出版日期:2013-04-15
  • 通信作者: 谢院生
  • 基金资助:
    国家重大科学研究计划项目(2011CB944004)国家自然科学基金面上项目(30971377)

Research status of tubular epithelial-mesenchymal transition

Xu-yan LI1, Yuan-sheng XIE1,(), Xiang-mei CHEN1   

  1. 1.Department of Nephrology, Kidney Institute of Chinese People’s Liberation Army,State Key Laboratory of Kidney Disease, Chinese People’s Liberation Army General Hospital,Beijing 100853, China
  • Published:2013-04-15
  • Corresponding author: Yuan-sheng XIE
引用本文:

李旭艳, 谢院生, 陈香美. 肾小管上皮-间充质转化的研究现状[J/OL]. 中华肾病研究电子杂志, 2013, 02(02): 98-102.

Xu-yan LI, Yuan-sheng XIE, Xiang-mei CHEN. Research status of tubular epithelial-mesenchymal transition[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2013, 02(02): 98-102.

肾小管间质纤维化(TIF)几乎是所有慢性肾脏病进展至终末期肾病(ESRD)的最终共同通路,肾小管上皮-间充质转化(EMT)是TIF的关键发病机制,成为目前肾脏领域研究的热点。本文旨在综述肾小管EMT的研究现状,总结目前肾小管EMT研究存在的问题及展望,为今后肾小管EMT的研究以及TIF的治疗提供新的思路。

Renal tubular interstitial fibrosis (TIF) is the final common pathway of a wide variety of chronic kidney diseases that eventually lead to end-stage renal disease (ESRD). Growing evidence has implicated tubular epithelial-mesenchymal transition (EMT) as a major pathway leading to TIF in diseased kidneys. Therefore, EMT has become the focus of research in kidney diseases. The purpose of this study is to review the status of renal tubular EMT. It also summarizes the remaining problems and prospects for future research to provide new clues for the study of tubular EMT as well as the treatment of TIF.

1
Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease [J]. Cell, 2009, 139(5):871-890.
2
Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition [J]. Cell Res, 2009, 19(2): 156-172.
3
Venkov CD, Link AJ, Jennings JL, et al. A proximal activator of transcription in epithelial-mesenchymal transition [J]. J Clin Invest, 2007, 117(2): 482-491.
4
Grande MT, Lopez-Novoa JM. Fibroblast activation and myofibroblast generation in obstructive nephropathy [J]. Nat Rev Nephrol, 2009, 5(6): 319-328.
5
Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis [J]. Am J Pathol, 2001, 159(4): 1465-1475.
6
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition [J]. J Clin Invest, 2009, 119(6): 1420-1428.
7
Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions [J]. J Clin Invest, 2009, 119(6): 1429-1437.
8
Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis:pathologic significance, molecular mechanism, and therapeutic intervention [J]. J Am Soc Nephrol, 2004, 15(1): 1-12.
9
Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease [J]. Am J Physiol Lung Cell Mol Physiol, 2007, 293(3): L525-534.
10
Weiskirchen R, Meurer SK. BMP-7 counteracting TGF-beta1 activities in organ fibrosis [J]. Front Biosci, 2013, 1(18): 1407-1434.
11
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 [J]. Nat Cell Biol, 2008, 10(5): 593-601.
12
Lamouille S, Subramanyam D, Blelloch R, et al. Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs [J]. Curr Opin Cell Biol, 2013, 25(2): 200-207.
13
Kato M, Putta S, Wang M, et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN [J]. Nat Cell Biol, 2009, 11(7): 881-889.
14
Wang B, Herman-Edelstein M, Koh P, et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta [J].Diabetes, 2010, 59(7): 1794-1802.
15
Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2 [J]. Genes Dev, 2008,22(7): 894-907.
16
Wang B, Koh P, Winbanks C, et al. miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression [J].Diabetes, 2011, 60(1): 280-287.
17
Chung AC, Huang XR, Meng X, et al. miR-192 mediates TGF-beta/Smad3-driven renal fibrosis [J]. J Am Soc Nephrol, 2010,21(8): 1317-1325.
18
Krupa A, Jenkins R, Luo DD, et al. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy [J]. J Am Soc Nephrol, 2010, 21(3): 438-447.
19
Liu Y, Taylor NE, Lu L, et al. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes [J]. Hypertension, 2010, 55(4): 974-982.
20
Liao B, Bao X, Liu L, et al. MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymalto-epithelial transition [J]. J Biol Chem, 2011, 286(19): 17359-17364.
21
Subramanyam D, Lamouille S, Judson RL, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells [J]. Nat Biotechnol,2011, 29(5): 443-448.
22
Arora H, Qureshi R, Park WY. miR-506 Regulates Epithelial Mesenchymal Transition in Breast Cancer Cell Lines [J]. PLoS One, 2013, 8(5): e64-73.
23
Bottinger EP, Bitzer M. TGF-beta signaling in renal disease [J]. J Am Soc Nephrol, 2002, 13(10): 2600-2610.
24
Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis [J]. J Am Soc Nephrol, 2010, 21(2): 212-222.
25
Fragiadaki M, Mason RM. Epithelial-mesenchymal transition in renal fibrosis - evidence for and against [J]. Int J Exp Pathol,2011, 92(3): 143-150.
26
Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis[J]. J Am Soc Nephrol, 2010, 21(11): 1819-1834.
27
Zeisberg EM, Potenta SE, Sugimoto H, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition[J]. J Am Soc Nephrol, 2008, 19(12): 2282-2287.
28
Strutz FM. EMT and proteinuria as progression factors [J].Kidney Int, 2009, 75(5): 475-481.
29
Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis [J]. J Clin Invest,2002, 110(3): 341-350.
30
Oba S, Kumano S, Suzuki E, et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis [J]. PLoS One, 2010,5(10): e13-14.
31
Yu MA, Shin KS, Kim JH, et al. HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium [J]. J Am Soc Nephrol, 2009, 20(3): 567-581.
32
Humphreys BD, Lin SL, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis [J]. Am J Pathol, 2010, 176(1): 85-97.
33
Li L, Zepeda-Orozco D, Black R, et al. Autophagy is a component of epithelial cell fate in obstructive uropathy [J]. Am J Pathol,2010, 176(4): 1767-1778.
34
Koesters R, Kaissling B, Lehir M, et al. Tubular overexpression of transforming growth factor-beta1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells [J].Am J Pathol, 2010, 177(2): 632-643.
35
Zeisberg M, Duffield JS. Resolved: EMT produces fibroblasts in the kidney [J]. J Am Soc Nephrol, 2010, 21(8): 1247-1253.
36
Holian J, Qi W, Kelly DJ, et al. Role of Kruppel-like factor 6 in transforming growth factor-beta1-induced epithelial-mesenchymal transition of proximal tubule cells [J]. Am J Physiol Renal Physiol, 2008, 295(5): F1388-1396.
37
Zeng R, Han M, Luo Y, et al. Role of Sema4C in TGF-β1-induced mitogen-activated protein kinase activation and epithelialmesenchymal transition in renal tubular epithelial cells [J].Nephrol Dial Transplant, 2011, 26(4): 1149-1156.
38
Bedi S, Vidyasagar A, Djamali A. Epithelial-to-mesenchymal transition and chronic allograft tubulointerstitial fibrosis [J].Transplant Rev (Orlando), 2008, 22(1): 1-5.
39
Strutz F, Okada H, Lo CW, et al. Identification and characterization of a fibroblast marker: FSP1 [J]. J Cell Biol,1995, 130(2): 393-405.
40
Ng YY, Huang TP, Yang WC, et al. Tubular epithelialmyofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats [J]. Kidney Int, 1998, 54(3):864-876.
41
Rastaldi MP, Ferrario F, Giardino L, et al. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies [J].Kidney Int, 2002, 62(1): 137-146.
42
Simonson MS. Phenotypic transitions and fibrosis in diabetic nephropathy [J]. Kidney Int, 2007, 71(9): 846-854.
43
Rossini M, Cheunsuchon B, Donnert E, et al. Immunolocalization of fibroblast growth factor-1 (FGF-1), its receptor (FGFR-1), and fibroblast-specific protein-1 (FSP-1) in inflammatory renal disease[J]. Kidney Int, 2005, 68(6): 2621-2628.
44
Nishitani Y, Iwano M, Yamaguchi Y, et al. Fibroblast-specific protein 1 is a specific prognostic marker for renal survival in patients with IgAN [J]. Kidney Int, 2005, 68(3): 1078-1085.
45
Hertig A, Anglicheau D, Verine J, et al. Early epithelial phenotypic changes predict graft fibrosis [J]. J Am Soc Nephrol,2008, 19(8): 1584-1591.
46
Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells [J]. J Cell Biol, 1982, 95(1): 333-339.
47
Jung YS, Kato I, Kim HR. A novel function of HPV16-E6/E7 in epithelial-mesenchymal transition [J]. Biochem Biophys Res Commun, 2013, 435(3): 339-344.
48
Hills CE, Siamantouras E, Smith SW, et al. TGFbeta modulates cell-to-cell communication in early epithelial-to-mesenchymal transition [J]. Diabetologia, 2012, 55(3): 812-824.
49
Wang W, Wang X, Chun J, et al. Inflammasome-independent NLRP3 augments TGF-β signaling in kidney epithelium [J]. J Immunol, 2013, 190(3): 1239-1249.
50
Fedorova LV, Raju V, El-Okdi N, et al. The cardiotonic steroid hormone marinobufagenin induces renal fibrosis: implication of epithelial-to-mesenchymal transition [J]. Am J Physiol Renal Physiol, 2009, 296(4): F922-934.
51
Docherty NG, Calvo IF, Quinlan MR, et al. Increased E-cadherin expression in the ligated kidney following unilateral ureteric obstruction [J]. Kidney Int, 2009, 75(2): 205-213.
52
Rajasekaran SA, Huynh TP, Wolle DG, et al. Na,K-ATPase subunits as markers for epithelial-mesenchymal transition in cancer and fibrosis [J]. Mol Cancer Ther, 2010, 9(6): 1515-1524.
53
Sebe A, Erdei Z, Varga K, et al. Cdc42 regulates myocardinrelated transcription factor nuclear shuttling and alpha-smooth muscle actin promoter activity during renal tubular epithelialmesenchymal transition [J]. Nephron Exp Nephrol, 2010, 114(3):e117-125.
54
Masszi A, Di Ciano C, Sirokmany G, et al. Central role for Rho in TGF-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition [J]. Am J Physiol Renal Physiol, 2003, 284(5): F911-924.
[1] 朱韵莹, 高晓琳, 戈艳萍, 王张嵩, 林钊宇, 李劲松, 武东辉. 缺氧相关的长链非编码RNA LINC00970在唾液腺腺样囊性癌中的表达及其作用[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 210-217.
[2] 潘裕华, 李锐钊, 刘菊娥, 曾英彤, 钟诗龙, 赖伟华. 心脏移植术后急性肾损伤再发低血药浓度他克莫司致慢性肾毒性一例[J/OL]. 中华移植杂志(电子版), 2024, 18(01): 40-44.
[3] 曹守青, 来东, 焦启龙, 安哲昆, 李修彬. 免疫细胞在肾脏缺血再灌注损伤修复中的作用研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 45-50.
[4] 周才芳, 曾秀琴, 曾庆义. TSP1对高糖诱导的肾小管上皮细胞损伤的影响研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2019, 09(02): 65-71.
[5] 王卫东, 陈佳, 何娅妮, 陈客宏. 尿诱骗受体2/肌酐水平与糖尿病肾小管病预后的关系[J/OL]. 中华肾病研究电子杂志, 2023, 12(02): 61-66.
[6] 沈婉君, 王田田, 尹智炜, 谢院生. 免疫电镜技术在肾脏疾病诊断和研究中的应用[J/OL]. 中华肾病研究电子杂志, 2022, 11(04): 219-223.
[7] 潘娟, 乔晞. 环状核糖核酸:糖尿病肾病治疗新靶点[J/OL]. 中华肾病研究电子杂志, 2022, 11(01): 44-47.
[8] 贾丽芳, 张玉萍, 白文英, 周培一, 王甲正. 长链非编码核糖核酸LINC00261通过miR-148b-3p/PTEN途径对高糖环境中HK-2细胞的保护作用[J/OL]. 中华肾病研究电子杂志, 2022, 11(01): 22-28.
[9] 陈钰澜, 陈健文, 朱飞, 王田田, 张妍, 刘娇娜, 黄梦杰, 吴玲玲, 陈香美. 紫草素抑制缺血再灌注肾损伤后肾小管细胞的增殖和迁移[J/OL]. 中华肾病研究电子杂志, 2022, 11(01): 15-21.
[10] 苏涛. 免疫检查点抑制剂相关肾脏损伤[J/OL]. 中华肾病研究电子杂志, 2021, 10(06): 301-305.
[11] 马强, 敖强国, 张雅宾, 程庆砾. 腺相关病毒与肾小管靶向基因转导[J/OL]. 中华肾病研究电子杂志, 2021, 10(02): 113-116.
[12] 王田田, 吴玲玲, 赵颖华, 吴杰, 陈香美. YWHAZ对肾小管上皮细胞增殖的影响[J/OL]. 中华肾病研究电子杂志, 2020, 09(03): 107-111.
[13] 孙秀丽, 刘振宇, 唐婷婷, 张景尚, 李猛, 毛迎燕, 万修华. 关注后发性白内障的发病机制及防控措施[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(04): 193-198.
[14] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J/OL]. 中华临床医师杂志(电子版), 2023, 17(09): 972-979.
[15] 何圣清, 袁唯唯, 孟莞瑞, 符青松, 郑晓斌, 武红梅. 达格列净联合二甲双胍治疗对早期2型糖尿病肾病患者肾小管功能和血清Klotho的影响[J/OL]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 236-242.
阅读次数
全文


摘要