1 |
Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease [J]. Cell, 2009, 139(5):871-890.
|
2 |
Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition [J]. Cell Res, 2009, 19(2): 156-172.
|
3 |
Venkov CD, Link AJ, Jennings JL, et al. A proximal activator of transcription in epithelial-mesenchymal transition [J]. J Clin Invest, 2007, 117(2): 482-491.
|
4 |
Grande MT, Lopez-Novoa JM. Fibroblast activation and myofibroblast generation in obstructive nephropathy [J]. Nat Rev Nephrol, 2009, 5(6): 319-328.
|
5 |
Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis [J]. Am J Pathol, 2001, 159(4): 1465-1475.
|
6 |
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition [J]. J Clin Invest, 2009, 119(6): 1420-1428.
|
7 |
Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions [J]. J Clin Invest, 2009, 119(6): 1429-1437.
|
8 |
Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis:pathologic significance, molecular mechanism, and therapeutic intervention [J]. J Am Soc Nephrol, 2004, 15(1): 1-12.
|
9 |
Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease [J]. Am J Physiol Lung Cell Mol Physiol, 2007, 293(3): L525-534.
|
10 |
Weiskirchen R, Meurer SK. BMP-7 counteracting TGF-beta1 activities in organ fibrosis [J]. Front Biosci, 2013, 1(18): 1407-1434.
|
11 |
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 [J]. Nat Cell Biol, 2008, 10(5): 593-601.
|
12 |
Lamouille S, Subramanyam D, Blelloch R, et al. Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs [J]. Curr Opin Cell Biol, 2013, 25(2): 200-207.
|
13 |
Kato M, Putta S, Wang M, et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN [J]. Nat Cell Biol, 2009, 11(7): 881-889.
|
14 |
Wang B, Herman-Edelstein M, Koh P, et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta [J].Diabetes, 2010, 59(7): 1794-1802.
|
15 |
Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2 [J]. Genes Dev, 2008,22(7): 894-907.
|
16 |
Wang B, Koh P, Winbanks C, et al. miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression [J].Diabetes, 2011, 60(1): 280-287.
|
17 |
Chung AC, Huang XR, Meng X, et al. miR-192 mediates TGF-beta/Smad3-driven renal fibrosis [J]. J Am Soc Nephrol, 2010,21(8): 1317-1325.
|
18 |
Krupa A, Jenkins R, Luo DD, et al. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy [J]. J Am Soc Nephrol, 2010, 21(3): 438-447.
|
19 |
Liu Y, Taylor NE, Lu L, et al. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes [J]. Hypertension, 2010, 55(4): 974-982.
|
20 |
Liao B, Bao X, Liu L, et al. MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymalto-epithelial transition [J]. J Biol Chem, 2011, 286(19): 17359-17364.
|
21 |
Subramanyam D, Lamouille S, Judson RL, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells [J]. Nat Biotechnol,2011, 29(5): 443-448.
|
22 |
Arora H, Qureshi R, Park WY. miR-506 Regulates Epithelial Mesenchymal Transition in Breast Cancer Cell Lines [J]. PLoS One, 2013, 8(5): e64-73.
|
23 |
Bottinger EP, Bitzer M. TGF-beta signaling in renal disease [J]. J Am Soc Nephrol, 2002, 13(10): 2600-2610.
|
24 |
Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis [J]. J Am Soc Nephrol, 2010, 21(2): 212-222.
|
25 |
Fragiadaki M, Mason RM. Epithelial-mesenchymal transition in renal fibrosis - evidence for and against [J]. Int J Exp Pathol,2011, 92(3): 143-150.
|
26 |
Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis[J]. J Am Soc Nephrol, 2010, 21(11): 1819-1834.
|
27 |
Zeisberg EM, Potenta SE, Sugimoto H, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition[J]. J Am Soc Nephrol, 2008, 19(12): 2282-2287.
|
28 |
Strutz FM. EMT and proteinuria as progression factors [J].Kidney Int, 2009, 75(5): 475-481.
|
29 |
Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis [J]. J Clin Invest,2002, 110(3): 341-350.
|
30 |
Oba S, Kumano S, Suzuki E, et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis [J]. PLoS One, 2010,5(10): e13-14.
|
31 |
Yu MA, Shin KS, Kim JH, et al. HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium [J]. J Am Soc Nephrol, 2009, 20(3): 567-581.
|
32 |
Humphreys BD, Lin SL, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis [J]. Am J Pathol, 2010, 176(1): 85-97.
|
33 |
Li L, Zepeda-Orozco D, Black R, et al. Autophagy is a component of epithelial cell fate in obstructive uropathy [J]. Am J Pathol,2010, 176(4): 1767-1778.
|
34 |
Koesters R, Kaissling B, Lehir M, et al. Tubular overexpression of transforming growth factor-beta1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells [J].Am J Pathol, 2010, 177(2): 632-643.
|
35 |
Zeisberg M, Duffield JS. Resolved: EMT produces fibroblasts in the kidney [J]. J Am Soc Nephrol, 2010, 21(8): 1247-1253.
|
36 |
Holian J, Qi W, Kelly DJ, et al. Role of Kruppel-like factor 6 in transforming growth factor-beta1-induced epithelial-mesenchymal transition of proximal tubule cells [J]. Am J Physiol Renal Physiol, 2008, 295(5): F1388-1396.
|
37 |
Zeng R, Han M, Luo Y, et al. Role of Sema4C in TGF-β1-induced mitogen-activated protein kinase activation and epithelialmesenchymal transition in renal tubular epithelial cells [J].Nephrol Dial Transplant, 2011, 26(4): 1149-1156.
|
38 |
Bedi S, Vidyasagar A, Djamali A. Epithelial-to-mesenchymal transition and chronic allograft tubulointerstitial fibrosis [J].Transplant Rev (Orlando), 2008, 22(1): 1-5.
|
39 |
Strutz F, Okada H, Lo CW, et al. Identification and characterization of a fibroblast marker: FSP1 [J]. J Cell Biol,1995, 130(2): 393-405.
|
40 |
Ng YY, Huang TP, Yang WC, et al. Tubular epithelialmyofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats [J]. Kidney Int, 1998, 54(3):864-876.
|
41 |
Rastaldi MP, Ferrario F, Giardino L, et al. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies [J].Kidney Int, 2002, 62(1): 137-146.
|
42 |
Simonson MS. Phenotypic transitions and fibrosis in diabetic nephropathy [J]. Kidney Int, 2007, 71(9): 846-854.
|
43 |
Rossini M, Cheunsuchon B, Donnert E, et al. Immunolocalization of fibroblast growth factor-1 (FGF-1), its receptor (FGFR-1), and fibroblast-specific protein-1 (FSP-1) in inflammatory renal disease[J]. Kidney Int, 2005, 68(6): 2621-2628.
|
44 |
Nishitani Y, Iwano M, Yamaguchi Y, et al. Fibroblast-specific protein 1 is a specific prognostic marker for renal survival in patients with IgAN [J]. Kidney Int, 2005, 68(3): 1078-1085.
|
45 |
Hertig A, Anglicheau D, Verine J, et al. Early epithelial phenotypic changes predict graft fibrosis [J]. J Am Soc Nephrol,2008, 19(8): 1584-1591.
|
46 |
Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells [J]. J Cell Biol, 1982, 95(1): 333-339.
|
47 |
Jung YS, Kato I, Kim HR. A novel function of HPV16-E6/E7 in epithelial-mesenchymal transition [J]. Biochem Biophys Res Commun, 2013, 435(3): 339-344.
|
48 |
Hills CE, Siamantouras E, Smith SW, et al. TGFbeta modulates cell-to-cell communication in early epithelial-to-mesenchymal transition [J]. Diabetologia, 2012, 55(3): 812-824.
|
49 |
Wang W, Wang X, Chun J, et al. Inflammasome-independent NLRP3 augments TGF-β signaling in kidney epithelium [J]. J Immunol, 2013, 190(3): 1239-1249.
|
50 |
Fedorova LV, Raju V, El-Okdi N, et al. The cardiotonic steroid hormone marinobufagenin induces renal fibrosis: implication of epithelial-to-mesenchymal transition [J]. Am J Physiol Renal Physiol, 2009, 296(4): F922-934.
|
51 |
Docherty NG, Calvo IF, Quinlan MR, et al. Increased E-cadherin expression in the ligated kidney following unilateral ureteric obstruction [J]. Kidney Int, 2009, 75(2): 205-213.
|
52 |
Rajasekaran SA, Huynh TP, Wolle DG, et al. Na,K-ATPase subunits as markers for epithelial-mesenchymal transition in cancer and fibrosis [J]. Mol Cancer Ther, 2010, 9(6): 1515-1524.
|
53 |
Sebe A, Erdei Z, Varga K, et al. Cdc42 regulates myocardinrelated transcription factor nuclear shuttling and alpha-smooth muscle actin promoter activity during renal tubular epithelialmesenchymal transition [J]. Nephron Exp Nephrol, 2010, 114(3):e117-125.
|
54 |
Masszi A, Di Ciano C, Sirokmany G, et al. Central role for Rho in TGF-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition [J]. Am J Physiol Renal Physiol, 2003, 284(5): F911-924.
|