切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2016, Vol. 05 ›› Issue (01) : 23 -28. doi: 10.3877/cma.j.issn.2095-3216.2016.01.006

所属专题: 文献

论著

Intermedin对血管紧张素Ⅱ诱导的NRK- 52E细胞纤维化的影响及机制研究
樊云1, 乔晞1,(), 王利华1   
  1. 1. 030001 太原,山西医科大学第二医院肾内科 山西省肾脏病研究所
  • 收稿日期:2015-11-03 出版日期:2016-02-28
  • 通信作者: 乔晞
  • 基金资助:
    国家自然科学基金青年科学基金项目(81100531)

Effect and mechanism of intermedin in NRK- 52E cellular fibrosis induced by angiotensin Ⅱ

Yun Fan1, Xi Qiao1,(), Lihua Wang1   

  1. 1. Department of Nephrology, Second Hospital Affiliated to Shanxi Medical University. Taiyuan 030001, China
  • Received:2015-11-03 Published:2016-02-28
  • Corresponding author: Xi Qiao
  • About author:
    Corresponding Author: Qiao Xi, Email:
引用本文:

樊云, 乔晞, 王利华. Intermedin对血管紧张素Ⅱ诱导的NRK- 52E细胞纤维化的影响及机制研究[J/OL]. 中华肾病研究电子杂志, 2016, 05(01): 23-28.

Yun Fan, Xi Qiao, Lihua Wang. Effect and mechanism of intermedin in NRK- 52E cellular fibrosis induced by angiotensin Ⅱ[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2016, 05(01): 23-28.

目的

观察Intermedin(IMD)对血管紧张素Ⅱ(Ang Ⅱ)诱导的大鼠肾小管上皮细胞系NRK- 52E纤维化的影响,并探讨其机制。

方法

体外培养的NRK- 52E细胞,随机分为4组:正常对照组、Ang Ⅱ组(10-6mol/L)、转染IMD质粒+Ang Ⅱ组、转染空质粒+Ang Ⅱ组。采用Fugene HD转染试剂,将pIRES2- EGFP空质粒和pIRES2- IMD真核表达质粒分别转染至NRK- 52E细胞,应用流式细胞仪检测转染效率,转染成功48 h后用Ang Ⅱ(10-6mol/L)干预24 h。用real- time RT- PCR检测各组细胞中Ⅰ型胶原(Col Ⅰ)的表达;Western印迹法检测Col Ⅰ、E-钙黏蛋白(E- cadherin)的表达;ELISA法检测细胞培养上清液内皮型一氧化氮合酶(eNOS)、环磷酸鸟苷(cGMP)的浓度。采用SPSS 17.0软件包进行统计学处理,以P<0.05为差异有统计学意义。

结果

与正常对照组相比,Ang Ⅱ组Col Ⅰ的表达显著上调(mRNA水平t=4.835,P=0.008;蛋白质水平P<0.001),E-钙黏蛋白的表达显著下降(t=4.284,P=0.013);转染IMD质粒后Col Ⅰ的表达较Ang Ⅱ组明显下降(mRNA水平t=3.032,P=0.039;蛋白质水平P<0.001),E-钙黏蛋白的表达明显上调(t=6.054,P=0.004);而转染空质粒后Col Ⅰ、E-钙黏蛋白的表达与Ang Ⅱ无明显差别(Col Ⅰ mRNA水平t=0.951,P=0.395;蛋白质水平t=1.208,P=0.294;E-钙黏蛋白蛋白质水平t=1.613,P=0.182)。与正常对照组相比,Ang Ⅱ组细胞上清液eNOS、cGMP的浓度显著增加(eNOS t=20.718,P<0.001;cGMP t=8.324,P=0.001);与Ang Ⅱ组相比,IMD质粒+Ang Ⅱ组的浓度进一步增加(eNOS t=10.682,P<0.001;cGMP t=18.974,P<0.001);而转染空质粒组+Ang Ⅱ组eNOS及cGMP的浓度与Ang Ⅱ组无明显差别(eNOS t=2.039,P=0.111;cGMP t=1.469,P=0.216)。

结论

IMD对Ang Ⅱ诱导的肾小管上皮细胞纤维化有抑制作用,可能通过eNOS- cGMP途径阻断Ang Ⅱ的作用实现的。

Objective

To investigate the effect of intermedin (IMD) on angiotensin Ⅱ- induced rat tubular cell (NRK- 52E) fibrosis and its possible mechanisms.

Methods

NRK- 52E cells were cultured and randomly allotted to the following 4 groups: control group, Ang Ⅱ (10-6 mol/L) group, IMD+ Ang Ⅱ group, and empty plasmid+ Ang Ⅱ group. Cells in IMD+ Ang Ⅱ group and empty plasmid+ Ang Ⅱ group were transfected with pIRES2- IMD or pIRES2- empty vector, respectively, by transfection complex comprising optimal proportion of plasmid and Fugene HD reagents. The transfer efficiency was detected by flow cytometry. The mRNA expression of collagen I (Col I) was detected by real- time RT- PCR. Protein levels of Col I and E- cadherin were examined by Western blot analysis. The contents of eNOS and cGMP in the supernatant were determined by ELISA.

Results

Compared with the control group, the expression of Col I was significantly increased while E- cadherin markedly decreased in the Ang Ⅱ group (Col I mRNA level t=4.835, P=0.008; Col I protein level P<0.001; E- cadherin protein level t=4.284, P=0.013); eNOS and cGMP levels in the supernatant of Ang Ⅱ- stimulated cells were significantly higher than those in the control cells (eNOS t=20.718, P<0.001; cGMP t=8.324, P=0.001). IMD gene transfer reversed the above changes (Col I mRNA level t=3.302, P=0.039; Col I protein level P<0.001; E- cadherin protein level t=6.045, P=0.004; eNOS t=10.682, P<0.001; cGMP t=18.974, P<0.001 ), while the empty plasmid had no effects on them (Col I mRNA level t=0.951, P=0.395; Col I protein level t=1.208, P=0.294; E- cadherin protein level t=1.613, P=0.182; eNOS t=2.039, P=0.111; cGMP t=1.469, P=0.216). Compared with the Ang Ⅱ group, the eNOS and cGMP levels of the IMD plasmid+ Ang Ⅱ group were further increased (eNOS t=10.682, P<0.001; cGMP t=18.974, P<0.001); and in the empty plasmid+ Ang Ⅱ group, the eNOS and cGMP levels were not significantly different from those in the Ang Ⅱ group (eNOS t=2.039, P=0.111; cGMP t=1.469, P=0.216).

Conclusion

IMD inhibited the Ang Ⅱ- induced tubular cell fibrosis, which might be achieved, at least partly, by blocking the effects of Ang Ⅱ through the eNOS- cGMP pathway.

表1 Real- time RT- PCR引物序列
图1 NRK-52E细胞转染流式图
图2 各组NRK- 52E细胞Ⅰ型胶原的表达
图3 各组NRK- 52E细胞E-钙黏蛋白的表达
表2 各组细胞培养上清液eNOS、cGMP的浓度(±sn=5)
图4 各组NRK- 52E细胞上清液eNOS、cGMP浓度
1
Dussaule JC, Chatziantoniou C. Reversal of renal disease: is it enough to inhibit the action of angiotensin Ⅱ [J]? Cell Death Differ, 2007, 14(7): 1343-1349.
2
Gheissari A, Hemmatzadeh S, Merrikhi A, et al. Chronic kidney disease in children: A report from a tertiary care center over 11 years [J]. J Nephropathol, 2012, 1(3): 177-182.
3
Mizuguchi Y, Chen J, Seshan SV, et al. A novel cell- permeable antioxidant peptide decreases renal tubular apoptosis and damage in unilateral ureteral obstruction [J]. Am J Physiol Renal Physiol, 2008, 295(5): F1545-F1553.
4
赵宁,乔晞,王利华,等. Intermedin及其受体系统在单侧输尿管梗阻大鼠肾组织的表达[J/CD]. 中华肾病研究电子杂志,2014, 3(6): 30-33.
5
乔晞,赵宁,王利华,等. 上调肾组织intermedin表达抑制单侧输尿管梗阻大鼠肾间质纤维化[J/CD]. 中华肾病研究电子杂志,2015, 4(1): 29-33.
6
Qiao X, Wang L, Wang Y, et al. Intermedin is upregulated and attenuates renal fibrosis by inhibition of oxidative stress in rats with unilateral ureteral obstruction [J]. Nephrology, 2015, 20(11): 820-831.
7
Ito K, YoshⅡ HT, Seta K, et al. Adrenomedullin increases renal nitric oxide production and ameliorates renal injury in mice with unilateral ureteral obstruction [J]. J Urol, 2010, 183(4): 1630-1635.
8
Morimoto R, Satoh F, Murakami O, et al. Expression of adrenomedullin2/intermedin in human brain, heart, and kidney [J]. Peptides, 2007, 28(5): 1095-1103.
9
Takei Y, Inoue K, Ogoshi M, et al. Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator [J]. FEBS Lett, 2004, 556(1- 3): 53-58.
10
Wilkinson- Berka JL, Agrotis A, Deliyanti D. The retinal renin- angiotensin system: Roles of angiotensin Ⅱ and aldosterone [J]. Peptides, 2012, 36(1): 142-150.
11
Christiane R, Gunter W. Angiotensin Ⅱ as a morphogenic cytokine stimulating renal fibrogenesis [J]. J Am Soc Nephrol, 2011, 22(7): 1189-1199.
12
Youhua L. New insights into epithelial- mesenchymal transition in kidney fibrosis [J]. J Am Soc Nephrol, 2009, 21(2): 212-222.
13
Weiland U, Haendeler J, Ihling C, et al. Inhibition of endogenous nitric oxide synthase potentiates ischemia- reperfusion- induced myocardial apoptosis via a caspase- 3 dependent pathway [J]. Cardiovasc Res, 2000, 45(3): 671-678.
14
朱国贞,李荣山,乔晞,等. 中介素减轻大鼠肾脏缺血再灌注损伤[J]. 中华器官移植杂志,2012,(33): 362-366.
15
Hofbauer KH, Schoof E, Kurtz A, et al. Inflammatory cytokines stimulate adrenomedullin expression through nitric oxide- dependent and - independent pathways [J]. Hypertens, 2002, 39(1): 161-167.
16
Savard S, Lavoie P, Villeneuve C, et al. eNOS gene delivery prevents hypertension and reduces renal failure and injury in rats with reduced renal mass [J]. Nephrol Dial Transplant, 2012, 27(6): 2182-2190.
17
Katoh T, Takahashi K, Klahr S, et al. Dietary supplementation with L- arginine ameliorates glomerular hypertension in rats with subtotal nephrectomy [J]. J Am Soc Nephrol, 1994, 4(9): 1690-1694.
18
Yang JW, Han ST, Kim YS, et al. Effects of a cGMP- specific phosphodiesterase inhibitor on expression of endothelial nitric oxide synthase and vascular endothelial growth factor in rats with cyclosporine- induced nephrotoxicity [J]. Transplant Proc, 2010, 42(10): 4625-4632.
[1] 李敏, 杨世英, 高晓琴, 周丹, 唐筱, 张立婷. 维生素A与慢性肝病相关性研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 65-70.
[2] 李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 181-185.
[3] 王亚岚, 倪婧, 余世庆, 陶银花, 张荣. 尼达尼布抗纤维化治疗特发性肺纤维化的耐受性和疗效预测因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 750-755.
[4] 周璇, 谢莉, 邹娟. 尼达尼布对特发性肺纤维化肺功能、肺纤维化程度及PDGF、PGE2、TGF-β1的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 368-372.
[5] 梅杰, 徐瑞, 蔡芸, 朱一超. 纤维化对肿瘤浸润免疫细胞的影响——“硬冷肿瘤”的形成[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 257-263.
[6] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[7] 翟航, 张广权, 吴芳芳, 史宪杰. 非编码RNA调控胰腺纤维化研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 583-587.
[8] 陈意志. 核磁共振钆造影剂导致的肾源性系统性纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 358-358.
[9] 孙婧婷, 李娜, 罗明辉, 高瑶瑶, 白义行, 朱国贞. 短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 181-187.
[10] 王静, 丁红. 益肾化湿颗粒对慢性肾衰竭大鼠肾组织转化生长因子-β1、α-平滑肌肌动蛋白表达的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 161-165.
[11] 周慧杰, 张云龙. 基于数据挖掘技术分析肾纤维化的中医病机与治法[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 152-160.
[12] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[13] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[14] 谭欣, 王鹏源, 胡良皞. 慢性胰腺炎抗炎和抗纤维化治疗的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 289-296.
[15] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?