切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2017, Vol. 06 ›› Issue (01) : 14 -19. doi: 10.3877/cma.j.issn.2095-3216.2017.01.004

所属专题: 文献

专家论坛

生物信息学技术及其在肾脏病研究中的应用
陈禹保1,(), 闫鹏程1   
  1. 1. 100094 北京市计算中心生物计算事业部、北京市基因测序与功能分析工程技术研究中心
  • 收稿日期:2017-01-12 出版日期:2017-02-28
  • 通信作者: 陈禹保
  • 基金资助:
    863计划项目(2008AA02Z441); 北京市自然基金委员会重大项目(7120001); 北京市科学技术研究院创新团队项目(IG201406N)

Bioinformatics analysis and its applications in kidney disease studies

Yubao Chen1,(), Pengcheng Yan1   

  1. 1. Department of Computational Biology in Beijing Computing Center, Beijing Engineering Research Centre of Gene Sequencing and Functional Analysis, Beijing Key Laboratory of Cloud Computing Key Technology and Application, Beijing 100094, China
  • Received:2017-01-12 Published:2017-02-28
  • Corresponding author: Yubao Chen
  • About author:
    Corresponding author: Chen Yubao, Email:
引用本文:

陈禹保, 闫鹏程. 生物信息学技术及其在肾脏病研究中的应用[J]. 中华肾病研究电子杂志, 2017, 06(01): 14-19.

Yubao Chen, Pengcheng Yan. Bioinformatics analysis and its applications in kidney disease studies[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2017, 06(01): 14-19.

高通量组学技术的快速发展获得了海量不同类型的生物分子数据。生物信息学技术的快速发展则帮助我们可以深入解读如此庞大的数据,理解生命或疾病发生过程中潜在的分子机制。高通量组学技术与生物信息学技术已经在肾脏病研究中得到了广泛应用,帮助我们更好地理解肾脏病发生的遗传基础和背后的生物学过程。随着高通量组学技术和生物信息学技术的快速发展,多种组学数据的整合生物信息学分析将为肾脏病的病理过程、早期诊断及治疗决策研究提供帮助。本文中,主要讨论生物信息学技术与高通量组学技术应用的进展,并以多种肾脏病研究为例介绍了相关方法的应用。

Under the recent development of high-throughput omics technologies, data of different omics can be accumulated to an enormous number easily. The rapid development of bioinformatics technology helps us to interpret such a large amount of data, and to understand the underlying molecular mechanisms at baseline and in disease conditions. High-throughput omics technologies and bioinformatics analysis have been widely used in the study of kidney diseases, helping us to better understand the genetic basis and biological process behind kidney diseases. Under the aid of the rapid development of omics technology and analysis methods, multi-omics will be widely used to provide more information on biological and pathological processes of kidney diseases, further giving guidance on the early diagnosis and treatment decisions in kidney diseases. In this review, the authors mainly discussed the development of high-throughput omics technology and bioinformatics analysis with examples of kidney disease research.

表1 肾脏病研究相关的数据库
[1]
Metzker ML. Sequencing technologies - the next generation [J]. Nat Rev Genet, 2010, 11(1): 31-46.
[2]
Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities [J]. Nat Rev Genet, 2011, 12(2): 87-98.
[3]
Laird PW. Principles and challenges of genomewide DNA methylation analysis [J]. Nat Rev Genet, 2010, 11(3): 191-203.
[4]
Altelaar AF, Munoz J, Heck AJ. Next-generation proteomics: towards an integrative view of proteome dynamics [J]. Nat Rev Genet, 2013, 14(1): 35-48.
[5]
Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma [J]. Nature, 2011, 474(7353): 609-615.
[6]
Cancer Genome Atlas Research Network, Kandoth C, Schultz N, et al. Integrated genomic characterization of endometrial carcinoma [J]. Nature, 2013, 497(7447): 67-73.
[7]
Zhang H, Liu T, Zhang Z, et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer [J]. Cell, 2016, 166(3): 755-765.
[8]
Rubingh CM, Bijlsma S, Derks EP, et al. Assessing the performance of statistical validation tools for megavariate metabolomics data [J]. Metabolomics, 2006, 2(2): 53-61.
[9]
Brougham DF, Ivanova G, Gottschalk M, et al. Artificial neural networks for classification in metabolomic studies of whole cells using 1H nuclear magnetic resonance [J]. J Biomed Biotechnol, 2011, 2011: 158094.
[10]
Ritchie MD, Holzinger ER, Li R, et al. Methods of integrating data to uncover genotype-phenotype interactions [J]. Nat Rev Genet, 2015, 16(2): 85-97.
[11]
Fridley BL, Lund S, Jenkins GD, et al. A Bayesian integrative genomic model for pathway analysis of complex traits [J]. Genet Epidemiol, 2012, 36(4): 352-359.
[12]
Lanckriet GR, De Bie T, Cristianini N, et al. A statistical framework for genomic data fusion [J]. Bioinformatics, 2004, 20(16): 2626-2635.
[13]
Kim D, Shin H, Song YS, et al. Synergistic effect of different levels of genomic data for cancer clinical outcome prediction [J]. J Biomed Inform, 2012, 45(6): 1191-1198.
[14]
Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs [J]. Nucleic Acids Res, 2017, 45(D1): D353-D361.
[15]
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life [J]. Nucleic Acids Res, 2015, 43(Database issue): D447-D452.
[16]
Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants [J]. Nucleic Acids Res, 2012, 40(Database issue): D930-D934.
[17]
Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using RegulomeDB [J]. Genome Res, 2012, 22(9): 1790-1797.
[18]
Amberger JS, Bocchini CA, Schiettecatte F, et al. OMIM.org: Online Mendelian Inheritance in Man (OMIM(R), an online catalog of human genes and genetic disorders [J]. Nucleic Acids Res, 2015, 43(Database issue): D789-D798.
[19]
Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer [J]. Nucleic Acids Res, 2011, 39(Database issue): D945-D950.
[20]
Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations [J]. Nucleic Acids Res, 2014, 42(Database issue): D1001-D1006.
[21]
Feng C, Xiong Z, Jiang H, et al. Genetic alteration in notch pathway is associated with better prognosis in renal cell carcinoma [J]. Biofactors, 2016, 42(1): 41-48.
[22]
Kottgen A, Glazer NL, Dehghan A, et al. Multiple loci associated with indices of renal function and chronic kidney disease [J]. Nat Genet, 2009, 41(6): 712-717.
[23]
Kottgen A, Hwang SJ, Larson MG, et al. Uromodulin levels associate with a common UMOD variant and risk for incident CKD [J]. J Am Soc Nephrol, 2010, 21(2): 337-344.
[24]
Pattaro C, Kottgen A, Teumer A, et al. Genome-wide association and functional follow-up reveals new loci for kidney function [J]. PLoS Genet, 2012, 8(3): e1002584.
[25]
Sandholm N, Salem RM, McKnight AJ, et al. New susceptibility loci associated with kidney disease in type 1 diabetes [J]. PLoS Genet, 2012, 8(9): e1002921.
[26]
Yu XQ, Li M, Zhang H, et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy [J]. Nat Genet, 2011, 44(2): 178-182.
[27]
Otto EA, Hurd TW, Airik R, et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy [J]. Nat Genet, 2010, 42(10): 840-850.
[28]
Badal SS, Danesh FR. MicroRNAs and their applications in kidney diseases [J]. Pediatr Nephrol, 2015, 30(5): 727-740.
[29]
Woroniecka KI, Park AS, Mohtat D, et al. Transcriptome analysis of human diabetic kidney disease [J]. Diabetes, 2011, 60(9): 2354-2369.
[30]
Godwin JG, Ge X, Stephan K, et al. Identification of a microRNA signature of renal ischemia reperfusion injury [J]. Proc Natl Acad Sci USA, 2010, 107(32): 14339-14344.
[31]
Schanstra JP, Mischak H. Proteomic urinary biomarker approach in renal disease: from discovery to implementation [J]. Pediatr Nephrol, 2015, 30(5): 713-725.
[32]
Menon V, Shlipak MG, Wang X, et al. Cystatin C as a risk factor for outcomes in chronic kidney disease [J]. Ann Intern Med, 2007, 147(1): 19-27.
[33]
Nauta FL, Boertien WE, Bakker SJ, et al. Glomerular and tubular damage markers are elevated in patients with diabetes [J]. Diabetes Care, 2011, 34(4): 975-981.
[34]
Mitsnefes MM, Kathman TS, Mishra J, et al. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in children with chronic kidney disease [J]. Pediatr Nephrol, 2007, 22(1): 101-108.
[35]
Hirayama A, Nakashima E, Sugimoto M, et al. Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy [J]. Anal Bioanal Chem, 2012, 404(10): 3101-3109.
[36]
Toyohara T, Akiyama Y, Suzuki T, et al. Metabolomic profiling of uremic solutes in CKD patients [J]. Hypertens Res, 2010, 33(9): 944-952.
[37]
Smyth LJ, McKay GJ, Maxwell AP, et al. DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease [J]. Epigenetics, 2014, 9(3): 366-376.
[38]
Ko YA, Mohtat D, Suzuki M, et al. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development [J]. Genome Biol, 2013, 14(10): R108.
[39]
Pesce F, Pathan S, Schena FP. From-omics to personalized medicine in nephrology: integration is the key [J]. Nephrol Dial Transplant, 2013, 28(1): 24-28.
[1] 王丽萍, 徐磊, 蒋天安, 强嘉璘. 微血管成像联合Qpack定量分析技术评估慢性肾脏病患者肾皮质区血流灌注的价值[J]. 中华医学超声杂志(电子版), 2023, 20(03): 292-296.
[2] 娄丽丽, 刘瀚旻. 儿童哮喘易感基因及表观遗传学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 249-255.
[3] 周川鹏, 杨浩, 魏微阳, 王奇, 黄亚强. 微创与标准通道经皮肾镜治疗肾结石合并肾功能不全的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 470-475.
[4] 杨小周, 赵华栋. N6-甲基腺苷表观转录组学在原发性肝癌中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 239-242.
[5] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[6] 杨长沅, 凌曦淘, 丘伽美, 段若兰, 李琴, 林玉婕, 秦新东, 侯海晶, 卢富华, 苏国彬. 慢性肾脏病患者衰弱的筛查/评估工具研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 229-233.
[7] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[8] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[9] 王诗远, 张爱华. 慢性肾脏病相关认知障碍的发生机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(03): 163-167.
[10] 洪权. 从血管内皮探讨糖尿病肾病的进展机制[J]. 中华肾病研究电子杂志, 2023, 12(01): 60-60.
[11] 石晓璟, 苏晓乐, 王利华. 直接口服抗凝药在慢性肾脏病合并心房颤动患者中的应用[J]. 中华肾病研究电子杂志, 2023, 12(01): 26-31.
[12] 郑颖, 孟金铃, 蔡广研, 冯哲. 混合式教学模式在肾脏病学专业学位研究生循证医学课程中的实践与思考[J]. 中华肾病研究电子杂志, 2023, 12(01): 48-50.
[13] 孙昕, 程海波, 沈卫星. 基于全转录组学探讨仙连解毒方治疗Ⅲ期结直肠癌患者的疗效机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 277-283.
[14] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[15] 李昌艳, 顾芳, 刘娟, 唐明敏. 非布司他治疗慢性肾脏病伴发高尿酸血症的疗效及预后影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(03): 279-284.
阅读次数
全文


摘要