切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2017, Vol. 06 ›› Issue (03) : 132 -137. doi: 10.3877/cma.j.issn.2095-3216.2017.03.008

所属专题: 文献

综述

肾脏疾病尿液蛋白质组学研究进展
王述蔷1, 耿晓东1, 吴镝1,()   
  1. 1. 100853 北京,解放军总医院肾脏病科、解放军肾脏病研究所、肾脏疾病国家重点实验室、国家慢性肾病临床医学研究中心
  • 收稿日期:2017-01-05 出版日期:2017-06-28
  • 通信作者: 吴镝

Progress in research on urine proteomics of kidney diseases

Shuqiang Wang1, Xiaodong Geng1, Di Wu1,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
  • Received:2017-01-05 Published:2017-06-28
  • Corresponding author: Di Wu
  • About author:
    Corresponding author: Wu Di, Email:
引用本文:

王述蔷, 耿晓东, 吴镝. 肾脏疾病尿液蛋白质组学研究进展[J]. 中华肾病研究电子杂志, 2017, 06(03): 132-137.

Shuqiang Wang, Xiaodong Geng, Di Wu. Progress in research on urine proteomics of kidney diseases[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2017, 06(03): 132-137.

目前,绝大多数肾脏疾病包括自身免疫性肾脏病及肾脏肿瘤的确诊均需要进行有创性组织检查来进行病理诊断。而作为一种无创、可反复收集的生物样本,尿液含有的蛋白质约70%来源于泌尿系统,30%来源于血液滤过,因此是寻找泌尿系统疾病生物学标记物的最佳来源。自1994年"蛋白质组"概念提出后,蛋白质组学研究便迅速发展起来,20世纪后蛋白质组学技术及生物信息学分析工具的不断完善更促进了蛋白质组学研究的进展。本文着重对尿蛋白质组研究的发展史、蛋白质组学技术及不同肾脏疾病尿蛋白质组的最新研究进展等进行综述。

At present, the invasive pathological examination is required for diagnosis of the vast majority of kidney diseases, including autoimmune kidney diseases and renal tumors. As a biological sample that can be collected by non-invasive and repeatable methods, the urinary proteins, among which 70% are from the urinary system itself, and 30% from the blood through hemofiltration, are the best sources to search for biological markers of the urinary system diseases. Since the concept of "proteome" was raised in 1994, proteomics research has developed rapidly. The continuous improvement in proteomics technology and bioinformatics analysis tools in the 20th century has promoted the progress of proteomics research. This review focused on the development history of urinary proteomics, and the most recent progress of research on proteomic techniques as well as urine proteomics of different renal diseases.

[1]
Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium [J]. Electrophoresis, 1995, 16(7): 1090-1094.
[2]
Witzmann F, Clack J, Fultz C, et al. Two-dimensional electrophoretic mapping of hepatic and renal stress proteins [J]. Electrophoresis, 1995, 16(3): 451-459.
[3]
Marshall T, Williams K. Two-dimensional electrophoresis of human urinary proteins following concentration by dye precipitation [J]. Electrophoresis, 1996, 17(7): 1265-1272.
[4]
Heine G, Raida M, Forssman WG. Mapping of peptides and protein fragments in human urine using liquid chromatography-mass spectrometry [J]. J Chromatogr A, 1997, 776(1): 117-124.
[5]
Sarto C, Marocchi A, Sanchez JC, et al. Renal cell carcinoma and normal kidney protein expression [J]. Electrophoresis, 1997, 18(3-4): 599-604.
[6]
Thongboonkerd V. Proteomics in nephrology: current status and future directions [J]. Am J Nephrol, 2004, 24(3): 360-378.
[7]
Shen Y, Zhao R, Berger SJ, et al. High-efficiency nanoscale liquid chromatography coupled on-line with mass spectrometry using nanoelectrospray ionization for proteomics [J]. Anal Chem, 2002, 74(16): 4235-4249.
[8]
Santucci L, Candiano G, Petretto A, et al. From hundreds to thousands: widening the normal human urinome [J]. J Proteomics, 2015, 112(1): 53-62.
[9]
Decramer S, Gonzalez de Peredo A, Breuil B, et al. Urine in clinical proteomics [J]. Mol Cell Proteomics, 2008, 7(10): 1850-1862.
[10]
Dihazi H. The urinary proteomics: a tool to discover new and potent biomarkers for kidney damage [J]. Ejifcc, 2009, 20(1): 83-82.
[11]
Gonzalez-Buitrago JM, Ferreira LLorenzo I. Urinary proteomics [J]. Clin Chim Acta, 2007, 375(1-2): 49-56.
[12]
Liu Z, Yuan Z, Zhao Q. SELDI-TOF-MS proteomic profiling of serum, urine, and amniotic fluid in neural tube defects [J]. PLoS One, 2014, 9(7): e103276.
[13]
Janech MG, Raymond JR, Arthur JM. Proteomics in renal research [J]. Am J Physiol Renal Physiol, 2007, 292(2): F501-F512.
[14]
Fliser D, Novak J, Thongboonkerd V, et al. Advances in urinary proteome analysis and biomarker discovery [J]. J Am Soc Nephrol, 2007, 18(4): 1057-1071.
[15]
Maeland Nilsen M, Uleberg KE, Janssen EA, et al. From SELDI-TOF MS to protein identification by on-chip elution [J]. J Proteomics, 2011, 74(12): 2995-2998.
[16]
Ibanez C, Simo C, Garcia-Canas V, et al. Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in foodomics: a review [J]. Anal Chim Acta, 2013, 802: 1-13.
[17]
Good DM, Thongboonkerd V, Novak J, et al. Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future [J]. J Proteome Res, 2007, 6(12): 4549-4555.
[18]
Adachi J, Kumar C, Zhang Y, et al. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins [J]. Genome Biol, 2006, 7(9): R80.
[19]
Husi H, Stephens N, Cronshaw A, et al. Proteomic analysis of urinary upper gastrointestinal cancer markers [J]. Proteomics Clin Appl, 2011, 5(5-6): 289-299.
[20]
Wasinger VC, Zeng M, Yau Y. Current status and advances in quantitative proteomic mass spectrometry [J]. Int J Proteomics, 2013, 2013: 180605.
[21]
Davis MT, Spahr CS, McGinley MD, et al. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry. II. Limitations of complex mixture analyses [J]. Proteomics, 2001, 1(1): 108-117.
[22]
Khan A, Packer NH. Simple urinary sample preparation for proteomic analysis [J]. J Proteome Res, 2006, 5(10): 2824-2838.
[23]
Ngai HH, Sit WH, Jiang PP, et al. Serial changes in urinary proteome profile of membranous nephropathy: implications for pathophysiology and biomarker discovery [J]. J Proteome Res, 2006, 5(11): 3038-3047.
[24]
Kentsis A, Monigatti F, Dorff K, et al. Urine proteomics for profiling of human disease using high accuracy mass spectrometry [J]. Proteomics Clin Appl, 2009, 3(9): 1052-1061.
[25]
Li QR, Fan KX, Li RX, et al. A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine [J]. Rapid Commun Mass Spectrom, 2010, 24(6): 823-832.
[26]
Nagaraj N, Mann M. Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome [J]. J Proteome Res, 2011, 10(2): 637-645.
[27]
Zerefos PG, Aivaliotis M, Baumann M, et al. Analysis of the urine proteome via a combination of multi-dimensional approaches [J]. Proteomics, 2012, 12(3): 391-400.
[28]
Farrah T, Deutsch EW, Omenn GS, et al. State of the human proteome in 2013 as viewed through PeptideAtlas: comparing the kidney, urine, and plasma proteomes for the biology- and disease-driven Human Proteome Project [J]. J Proteome Res, 2014, 13(1): 60-75.
[29]
Santucci L, Bruschi M, Candiano G, et al. Urine proteome biomarkers in kidney diseases. I. Limits, perspectives, and first focus on normal urine [J]. Biomark Insights, 2016, 11: 41-48.
[30]
Di Meo A, Batruch I, Yousef AG, et al. An integrated proteomic and peptidomic assessment of the normal human urinome [J]. Clin Chem Lab Med, 2017, 55(2): 237-247.
[31]
Bouatra S, Aziat F, Mandal R, et al. The human urine metabolome [J]. PLoS One, 2013, 8(9): e73076.
[32]
Julian BA, Wittke S, Novak J, et al. Electrophoretic methods for analysis of urinary polypeptides in IgA-associated renal diseases [J]. Electrophoresis, 2007, 28(23): 4469-4483.
[33]
Rocchetti MT, Papale M, d'Apollo AM, et al. Association of urinary laminin G-like 3 and free K light chains with disease activity and histological injury in IgA nephropathy [J]. Clin J Am Soc Nephrol, 2013, 8(7): 1115-1125.
[34]
Zhao S, Li R, Cai X, et al. The application of SILAC mouse in human body fluid proteomics analysis reveals protein patterns associated with IgA nephropathy [J]. Evid Based Complement Alternat Med, 2013, 2013: 275390.
[35]
Kalantari S, Rutishauser D, Samavat S, et al. Urinary prognostic biomarkers and classification of IgA nephropathy by high resolution mass spectrometry coupled with liquid chromatography [J]. PLoS One, 2013, 8(12): e80830.
[36]
Mucha K, Bakun M, Jazwiec R, et al. Complement components, proteolysisrelated, and cell communicationrelated proteins detected in urine proteomics are associated with IgA nephropathy [J]. Pol Arch Med Wewn, 2014, 124(7-8): 380-386.
[37]
Rood IM, Merchant ML, Wilkey DW, et al. Increased expression of lysosome membrane protein 2 in glomeruli of patients with idiopathic membranous nephropathy [J]. Proteomics, 2015, 15(21): 3722-3730.
[38]
Beck LH Jr, Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy [J]. N Engl J Med, 2009, 361(1): 11-21.
[39]
Suzuki M, Wiers K, Brooks EB, et al. Initial validation of a novel protein biomarker panel for active pediatric lupus nephritis [J]. Pediatr Res, 2009, 65(5): 530-536.
[40]
Aggarwal A, Gupta R, Negi VS, et al. Urinary haptoglobin, alpha-1 anti-chymotrypsin and retinol binding protein identified by proteomics as potential biomarkers for lupus nephritis [J]. Clin Exp Immunol, 2017, 188(2): 254-262.
[41]
Soldatos G, Cooper ME. Diabetic nephropathy: important pathophysiologic mechanisms [J]. Diabetes Res Clin Pract, 2008, 82(Suppl 1): S75-S79.
[42]
Zurbig P, Jerums G, Hovind P, et al. Urinary proteomics for early diagnosis in diabetic nephropathy [J]. Diabetes, 2012, 61(12): 3304-3313.
[43]
Zubiri I, Posada-Ayala M, Sanz-Maroto A, et al. Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis [J]. J Proteomics, 2014, 96: 92-102.
[44]
Lewandowicz A, Bakun M, Kohutnicki R, et al. Changes in urine proteome accompanying diabetic nephropathy progression [J]. Pol Arch Med Wewn, 2015, 125(1-2): 27-38.
[45]
Marikanty RK, Gupta MK, Cherukuvada SV, et al. Identification of urinary proteins potentially associated with diabetic kidney disease [J]. Indian J Nephrol, 2016, 26(6): 434-445.
[46]
Nguyen MT, Ross GF, Dent CL, et al. Early prediction of acute renal injury using urinary proteomics [J]. Am J Nephrol, 2005, 25(4): 318-326.
[47]
Metzger J, Kirsch T, Schiffer E, et al. Urinary excretion of twenty peptides forms an early and accurate diagnostic pattern of acute kidney injury [J]. Kidney Int, 2010, 78(12): 1252-1262.
[48]
Aregger F, Uehlinger DE, Witowski J, et al. Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury [J]. Kidney Int, 2014, 85(4): 909-919.
[49]
Bosso N, Chinello C, Picozzi SC, et al. Human urine biomarkers of renal cell carcinoma evaluated by ClinProt [J]. Proteomics Clin Appl, 2008, 2(7-8): 1036-1046.
[50]
Raimondo F, Morosi L, Corbetta S, et al. Differential protein profiling of renal cell carcinoma urinary exosomes [J]. Mol Biosyst, 2013, 9(6): 1220-1233.
[51]
Sandim V, Pereira Dde A, Kalume DE, et al. Proteomic analysis reveals differentially secreted proteins in the urine from patients with clear cell renal cell carcinoma [J]. Urol Oncol, 2016, 34(1): 5.e11-25.
[52]
Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine [J]. Proc Natl Acad Sci USA, 2004, 101(36): 13368-13373.
[53]
Moon PG, You S, Lee JE, et al. Urinary exosomes and proteomics [J]. Mass Spectrom Rev, 2011, 30(6): 1185-1202.
[54]
Gonzales PA, Pisitkun T, Hoffert JD, et al. Large-scale proteomics and phosphoproteomics of urinary exosomes [J]. J Am Soc Nephrol, 2009, 20(2): 363-379.
[1] 韩春颖, 王婷婷, 李艳艳, 朴金霞. 子宫内膜癌患者淋巴管间隙浸润预测因素研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 403-409.
[2] 郑鹏, 吴赛萍, 谢秀璋, 史庆丰. 术前预测感染性肾结石列线图模型的构建及验证[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 299-306.
[3] 张宇珂, 杜顺达, 毛一雷. 尿液检测在原发性肝癌中的应用[J]. 中华普通外科学文献(电子版), 2022, 16(03): 225-230.
[4] 张爽, 林冰, 周平, 刘沙, 刘玉, 罗志飞. 蛋白质组学RPPA技术筛选乳腺癌患者预后相关血清分子标志物的研究[J]. 中华普外科手术学杂志(电子版), 2021, 15(05): 554-557.
[5] 张艳如, 苏晓乐, 王利华. 丝氨酸蛋白酶Corin与肾脏疾病的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 220-223.
[6] 李德伦, 袁思宇, 刘安琪. 微小RNA-155在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(01): 39-43.
[7] 沈婉君, 王田田, 尹智炜, 谢院生. 免疫电镜技术在肾脏疾病诊断和研究中的应用[J]. 中华肾病研究电子杂志, 2022, 11(04): 219-223.
[8] 张梦琴, 何燕, 张璐, 石桂秀. 狼疮性肾炎的生物标志物研究进展[J]. 中华肾病研究电子杂志, 2022, 11(03): 161-166.
[9] 张爽, 刘书馨, 牟向伟, 姜博文, 董毳, 由莲莲. 人工智能技术在肾脏病中的应用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(06): 342-346.
[10] 张亚伟, 王兴智. 可溶性ST2蛋白在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 292-295.
[11] 张楷齐, 吴晶魁, 倪兆慧. 铁死亡在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 268-273.
[12] 季红娟, 林娟. 基于分类树方法构建糖尿病肾脏疾病发病风险模型[J]. 中华肾病研究电子杂志, 2021, 10(05): 246-251.
[13] 刘露露, 赖学莉, 谌卫, 郭志勇. 吲哚胺2,3-双加氧酶在肾脏疾病中的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(04): 224-226.
[14] 杜晓艳, 黄蓉双, 马良, 付平. 脂肪酸结合蛋白4在肾脏疾病中的研究进展[J]. 中华肾病研究电子杂志, 2021, 10(01): 44-46.
[15] 冯媛瑜, 黄洪飞, 邓小燕. iRICELL3000全自动尿液分析流水线决策树在尿路感染筛查分析中的应用[J]. 中华临床实验室管理电子杂志, 2021, 09(02): 71-74.
阅读次数
全文


摘要