[1] |
Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium [J]. Electrophoresis, 1995, 16(7): 1090-1094.
|
[2] |
Witzmann F, Clack J, Fultz C, et al. Two-dimensional electrophoretic mapping of hepatic and renal stress proteins [J]. Electrophoresis, 1995, 16(3): 451-459.
|
[3] |
Marshall T, Williams K. Two-dimensional electrophoresis of human urinary proteins following concentration by dye precipitation [J]. Electrophoresis, 1996, 17(7): 1265-1272.
|
[4] |
Heine G, Raida M, Forssman WG. Mapping of peptides and protein fragments in human urine using liquid chromatography-mass spectrometry [J]. J Chromatogr A, 1997, 776(1): 117-124.
|
[5] |
Sarto C, Marocchi A, Sanchez JC, et al. Renal cell carcinoma and normal kidney protein expression [J]. Electrophoresis, 1997, 18(3-4): 599-604.
|
[6] |
Thongboonkerd V. Proteomics in nephrology: current status and future directions [J]. Am J Nephrol, 2004, 24(3): 360-378.
|
[7] |
Shen Y, Zhao R, Berger SJ, et al. High-efficiency nanoscale liquid chromatography coupled on-line with mass spectrometry using nanoelectrospray ionization for proteomics [J]. Anal Chem, 2002, 74(16): 4235-4249.
|
[8] |
Santucci L, Candiano G, Petretto A, et al. From hundreds to thousands: widening the normal human urinome [J]. J Proteomics, 2015, 112(1): 53-62.
|
[9] |
Decramer S, Gonzalez de Peredo A, Breuil B, et al. Urine in clinical proteomics [J]. Mol Cell Proteomics, 2008, 7(10): 1850-1862.
|
[10] |
Dihazi H. The urinary proteomics: a tool to discover new and potent biomarkers for kidney damage [J]. Ejifcc, 2009, 20(1): 83-82.
|
[11] |
Gonzalez-Buitrago JM, Ferreira LLorenzo I. Urinary proteomics [J]. Clin Chim Acta, 2007, 375(1-2): 49-56.
|
[12] |
Liu Z, Yuan Z, Zhao Q. SELDI-TOF-MS proteomic profiling of serum, urine, and amniotic fluid in neural tube defects [J]. PLoS One, 2014, 9(7): e103276.
|
[13] |
Janech MG, Raymond JR, Arthur JM. Proteomics in renal research [J]. Am J Physiol Renal Physiol, 2007, 292(2): F501-F512.
|
[14] |
Fliser D, Novak J, Thongboonkerd V, et al. Advances in urinary proteome analysis and biomarker discovery [J]. J Am Soc Nephrol, 2007, 18(4): 1057-1071.
|
[15] |
Maeland Nilsen M, Uleberg KE, Janssen EA, et al. From SELDI-TOF MS to protein identification by on-chip elution [J]. J Proteomics, 2011, 74(12): 2995-2998.
|
[16] |
Ibanez C, Simo C, Garcia-Canas V, et al. Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in foodomics: a review [J]. Anal Chim Acta, 2013, 802: 1-13.
|
[17] |
Good DM, Thongboonkerd V, Novak J, et al. Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future [J]. J Proteome Res, 2007, 6(12): 4549-4555.
|
[18] |
Adachi J, Kumar C, Zhang Y, et al. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins [J]. Genome Biol, 2006, 7(9): R80.
|
[19] |
Husi H, Stephens N, Cronshaw A, et al. Proteomic analysis of urinary upper gastrointestinal cancer markers [J]. Proteomics Clin Appl, 2011, 5(5-6): 289-299.
|
[20] |
Wasinger VC, Zeng M, Yau Y. Current status and advances in quantitative proteomic mass spectrometry [J]. Int J Proteomics, 2013, 2013: 180605.
|
[21] |
Davis MT, Spahr CS, McGinley MD, et al. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry. II. Limitations of complex mixture analyses [J]. Proteomics, 2001, 1(1): 108-117.
|
[22] |
Khan A, Packer NH. Simple urinary sample preparation for proteomic analysis [J]. J Proteome Res, 2006, 5(10): 2824-2838.
|
[23] |
Ngai HH, Sit WH, Jiang PP, et al. Serial changes in urinary proteome profile of membranous nephropathy: implications for pathophysiology and biomarker discovery [J]. J Proteome Res, 2006, 5(11): 3038-3047.
|
[24] |
Kentsis A, Monigatti F, Dorff K, et al. Urine proteomics for profiling of human disease using high accuracy mass spectrometry [J]. Proteomics Clin Appl, 2009, 3(9): 1052-1061.
|
[25] |
Li QR, Fan KX, Li RX, et al. A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine [J]. Rapid Commun Mass Spectrom, 2010, 24(6): 823-832.
|
[26] |
Nagaraj N, Mann M. Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome [J]. J Proteome Res, 2011, 10(2): 637-645.
|
[27] |
Zerefos PG, Aivaliotis M, Baumann M, et al. Analysis of the urine proteome via a combination of multi-dimensional approaches [J]. Proteomics, 2012, 12(3): 391-400.
|
[28] |
Farrah T, Deutsch EW, Omenn GS, et al. State of the human proteome in 2013 as viewed through PeptideAtlas: comparing the kidney, urine, and plasma proteomes for the biology- and disease-driven Human Proteome Project [J]. J Proteome Res, 2014, 13(1): 60-75.
|
[29] |
Santucci L, Bruschi M, Candiano G, et al. Urine proteome biomarkers in kidney diseases. I. Limits, perspectives, and first focus on normal urine [J]. Biomark Insights, 2016, 11: 41-48.
|
[30] |
Di Meo A, Batruch I, Yousef AG, et al. An integrated proteomic and peptidomic assessment of the normal human urinome [J]. Clin Chem Lab Med, 2017, 55(2): 237-247.
|
[31] |
Bouatra S, Aziat F, Mandal R, et al. The human urine metabolome [J]. PLoS One, 2013, 8(9): e73076.
|
[32] |
Julian BA, Wittke S, Novak J, et al. Electrophoretic methods for analysis of urinary polypeptides in IgA-associated renal diseases [J]. Electrophoresis, 2007, 28(23): 4469-4483.
|
[33] |
Rocchetti MT, Papale M, d'Apollo AM, et al. Association of urinary laminin G-like 3 and free K light chains with disease activity and histological injury in IgA nephropathy [J]. Clin J Am Soc Nephrol, 2013, 8(7): 1115-1125.
|
[34] |
Zhao S, Li R, Cai X, et al. The application of SILAC mouse in human body fluid proteomics analysis reveals protein patterns associated with IgA nephropathy [J]. Evid Based Complement Alternat Med, 2013, 2013: 275390.
|
[35] |
Kalantari S, Rutishauser D, Samavat S, et al. Urinary prognostic biomarkers and classification of IgA nephropathy by high resolution mass spectrometry coupled with liquid chromatography [J]. PLoS One, 2013, 8(12): e80830.
|
[36] |
Mucha K, Bakun M, Jazwiec R, et al. Complement components, proteolysisrelated, and cell communicationrelated proteins detected in urine proteomics are associated with IgA nephropathy [J]. Pol Arch Med Wewn, 2014, 124(7-8): 380-386.
|
[37] |
Rood IM, Merchant ML, Wilkey DW, et al. Increased expression of lysosome membrane protein 2 in glomeruli of patients with idiopathic membranous nephropathy [J]. Proteomics, 2015, 15(21): 3722-3730.
|
[38] |
Beck LH Jr, Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy [J]. N Engl J Med, 2009, 361(1): 11-21.
|
[39] |
Suzuki M, Wiers K, Brooks EB, et al. Initial validation of a novel protein biomarker panel for active pediatric lupus nephritis [J]. Pediatr Res, 2009, 65(5): 530-536.
|
[40] |
Aggarwal A, Gupta R, Negi VS, et al. Urinary haptoglobin, alpha-1 anti-chymotrypsin and retinol binding protein identified by proteomics as potential biomarkers for lupus nephritis [J]. Clin Exp Immunol, 2017, 188(2): 254-262.
|
[41] |
Soldatos G, Cooper ME. Diabetic nephropathy: important pathophysiologic mechanisms [J]. Diabetes Res Clin Pract, 2008, 82(Suppl 1): S75-S79.
|
[42] |
Zurbig P, Jerums G, Hovind P, et al. Urinary proteomics for early diagnosis in diabetic nephropathy [J]. Diabetes, 2012, 61(12): 3304-3313.
|
[43] |
Zubiri I, Posada-Ayala M, Sanz-Maroto A, et al. Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis [J]. J Proteomics, 2014, 96: 92-102.
|
[44] |
Lewandowicz A, Bakun M, Kohutnicki R, et al. Changes in urine proteome accompanying diabetic nephropathy progression [J]. Pol Arch Med Wewn, 2015, 125(1-2): 27-38.
|
[45] |
Marikanty RK, Gupta MK, Cherukuvada SV, et al. Identification of urinary proteins potentially associated with diabetic kidney disease [J]. Indian J Nephrol, 2016, 26(6): 434-445.
|
[46] |
Nguyen MT, Ross GF, Dent CL, et al. Early prediction of acute renal injury using urinary proteomics [J]. Am J Nephrol, 2005, 25(4): 318-326.
|
[47] |
Metzger J, Kirsch T, Schiffer E, et al. Urinary excretion of twenty peptides forms an early and accurate diagnostic pattern of acute kidney injury [J]. Kidney Int, 2010, 78(12): 1252-1262.
|
[48] |
Aregger F, Uehlinger DE, Witowski J, et al. Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury [J]. Kidney Int, 2014, 85(4): 909-919.
|
[49] |
Bosso N, Chinello C, Picozzi SC, et al. Human urine biomarkers of renal cell carcinoma evaluated by ClinProt [J]. Proteomics Clin Appl, 2008, 2(7-8): 1036-1046.
|
[50] |
Raimondo F, Morosi L, Corbetta S, et al. Differential protein profiling of renal cell carcinoma urinary exosomes [J]. Mol Biosyst, 2013, 9(6): 1220-1233.
|
[51] |
Sandim V, Pereira Dde A, Kalume DE, et al. Proteomic analysis reveals differentially secreted proteins in the urine from patients with clear cell renal cell carcinoma [J]. Urol Oncol, 2016, 34(1): 5.e11-25.
|
[52] |
Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine [J]. Proc Natl Acad Sci USA, 2004, 101(36): 13368-13373.
|
[53] |
Moon PG, You S, Lee JE, et al. Urinary exosomes and proteomics [J]. Mass Spectrom Rev, 2011, 30(6): 1185-1202.
|
[54] |
Gonzales PA, Pisitkun T, Hoffert JD, et al. Large-scale proteomics and phosphoproteomics of urinary exosomes [J]. J Am Soc Nephrol, 2009, 20(2): 363-379.
|