切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2025, Vol. 14 ›› Issue (01) : 48 -52. doi: 10.3877/cma.j.issn.2095-3216.2025.01.008

综述

急性肾损伤早期生物标志物即时检测的研究进展
何许巍1, 刘洋1, 程庆砾1, 敖强国1,()   
  1. 1. 100853 北京,解放军总医院第二医学中心肾脏病科、国家老年疾病临床医学研究中心
  • 收稿日期:2024-08-08 出版日期:2025-02-28
  • 通信作者: 敖强国
  • 基金资助:
    国家重点研发计划 ( 2023YFC3605500,2023YFC3605501)解放军总医院青年自主创新科学基金项目(22QNFC007)

Research progress on point-of-care testing of early biomarkers for acute kidney injury

Xuwei He1, Yang Liu1, Qingli Cheng1, Qiangguo Ao1,()   

  1. 1. Department of Nephrology, Second Medical Center of Chinese PLA General Hospital,National Clinical Research Centre for Geriatric Diseases, Beijing 100853, China
  • Received:2024-08-08 Published:2025-02-28
  • Corresponding author: Qiangguo Ao
引用本文:

何许巍, 刘洋, 程庆砾, 敖强国. 急性肾损伤早期生物标志物即时检测的研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 48-52.

Xuwei He, Yang Liu, Qingli Cheng, Qiangguo Ao. Research progress on point-of-care testing of early biomarkers for acute kidney injury[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2025, 14(01): 48-52.

长期以来急性肾损伤(AKI)的诊断依据主要为血清肌酐和估算的肾小球滤过率,但是其检测滞后性容易导致临床上错过最佳诊疗时机。 当代纳米技术和生物医学发展为AKI 的早期诊断带来希望。 即时检测(POCT)生物标志物如肾损伤分子-1、中性粒细胞明胶酶相关脂质运载蛋白、微小RNA 等,有可能使AKI 的诊断过程变得较为快速、简单和低成本。 本文综述了AKI 早期生物标志物的意义及其POCT 研究现状,并对未来的挑战及应用前景进行展望。

For a long time, the diagnosis of acute kidney injury (AKI) has mainly relied on serum creatinine and estimated glomerular filtration rate, but the lag in detection often leads to missed optimal diagnosis and treatment opportunities in clinical practice.Contemporary nanotechnology and biomedical developments have brought hope for the early diagnosis of AKI.Point-of-care testing (POCT) for biomarkers such as kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, and microRNAs may make the diagnostic process of AKI faster, simpler, and of lower-cost.This article reviewed the significance of early biomarkers for AKI as well as the current status of their POCT research, and looked ahead to the future challenges and application prospects.

表1 肾损伤分子-1 检测方法、耗时、检测范围及测试仪器比较
表2 中性粒细胞明胶酶相关脂质运载蛋白检测方法、耗时及检测范围比较
表3 微小RNA-21 检测方法、耗时及检测范围比较
[1]
Rossiter A, La A, Koyner JL, et al.New biomarkers in acute kidney injury [J].Crit Rev Clin Lab Sci, 2024, 61(1): 23-44.
[2]
张轶男, 朱国贞.急性肾损伤向慢性肾脏病转变研究进展[J/OL].中华肾病研究电子杂志, 2024, 13(2): 106-112.
[3]
Xiang D, Liu Z, Wu M, et al.Enhanced piezo-photoelectric catalysis with oriented carrier migration in asymmetric Au-ZnO nanorod array [J].Small, 2020, 16(18): e1907603.
[4]
Kot K, Kupnicka P, Witulska O, et al.Potential biomarkers in diagnosis of renal acanthamoebiasis [J].Int J Mol Sci, 2021,22(12): 6583.
[5]
Bullen AL, Katz R, Jotwani V, et al.Biomarkers of kidney tubule health, ckd progression, and acute kidney injury in sprint(systolic blood pressure intervention trial) participants [J].Am J Kidney Dis, 2021, 78(3): 361-368.
[6]
Wen Y, Parikh CR.Current concepts and advances in biomarkers of acute kidney injury [J].Crit Rev Clin Lab Sci,2021, 58(5): 354-368.
[7]
Fazel M, Sarveazad A, Mohamed Ali K, et al.Accuracy of urine kidney injury molecule-1 in predicting acute kidney injury in children; a systematic review and meta-analysis [J].Arch Acad Emerg Med, 2020, 8(1): e44.
[8]
Zou C, Wang C, Lu L.Advances in the study of subclinical aki biomarkers [J].Front Physiol, 2022, 13: 960059.
[9]
Schulz CA, Engström G, Nilsson J, et al.Plasma kidney injury molecule-1 (p-KIM-1) levels and deterioration of kidney function over 16 years [J].Nephrol Dial Transplant, 2020, 35(2): 265-273.
[10]
Kwon TJ, Jang E, Lee DS, et al.Development of a noninvasive KIM-1-based live-imaging technique in the context of a druginduced kidney-injury mouse model [J].ACS Appl Bio Mater,2021, 4(2): 1508-1514.
[11]
Shaoxiong Z, Zhou X, Qin Y, et al.Establishment of a timeresolved immunoassay for acute kidney injury based on the detection of KIM-1 [J].J Clin Lab Anal, 2022, 36(9): e24603.
[12]
Yin Z, Liu C, Yi Y, et al.A label-free electrochemical immunosensor based on PdPtCu@bp bilayer nanosheets for pointof-care kidney injury molecule-1 testing [J].J Electroanalyt Chem, 2022, 917: 116420.
[13]
Liu Y, He X, Lian Z, et al.Rapid and sensitive detection of urinary KIM-1 using fully printed photonic crystal microarrays[J].Nano Res, 2024, 17(5): 4329-4337.
[14]
Wiraja C, Mori Y, Ichimura T, et al.Nephrotoxicity assessment with human kidney tubuloids using spherical nucleic acid-based mrna nanoflares [J].Nano Lett, 2021, 21(13): 5850-5858.
[15]
Lupu L, Rozenfeld KL, Zahler D, et al.Detection of renal injury following primary coronary intervention among ST-segment elevation myocardial infarction patients: doubling the incidence using neutrophil gelatinase-associated lipocalin as a renal biomarker [J].J Clin Med, 2021, 10(10): 2120.
[16]
Gupta B, Tiwari P, Subramanian A, et al.Evaluation of plasma and urine neutrophil gelatinase-associated lipocalin (NGAL) as an early diagnostic marker of acute kidney injury (AKI) in critically ill trauma patients [J].J Anaesthesiol Clin Pharmacol, 2023, 39(2): 292-301.
[17]
Gambino C, Piano S, Stenico M, et al.Diagnostic and prognostic performance of urinary neutrophil gelatinase-associated lipocalin in patients with cirrhosis and acute kidney injury [J].Hepatology, 2023, 77(5): 1630-1638.
[18]
Xiao Z, Huang Q, Yang Y, et al.Emerging early diagnostic methods for acute kidney injury [J].Theranostics, 2022, 12(6): 2963-2986.
[19]
Brasiunas B, Popov A, Lisyte V, et al.ZnO nanostructures: a promising frontier in immunosensor development [J].Biosens Bioelectron, 2024, 246: 115848.
[20]
Yang Y, Huang Q, Xiao Z, et al.Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer [J].Mater Today Bio, 2022, 13: 100218.
[21]
Cho CH, Kim JH, Song DK, et al.An affinity peptideincorporated electrochemical biosensor for the detection of neutrophil gelatinase-associated lipocalin[ J ].Biosens Bioelectron, 2019, 142: 111482.
[22]
Topor CV, Puiu M, Bala C.Strategies for surface design in surface plasmon resonance (SPR) sensing [J].Biosensors(Basel), 2023, 13(4): 465.
[23]
Huo Z, Li Y, Chen B, et al.Recent advances in surface plasmon resonance imaging and biological applications [J].Talanta, 2023, 255: 124213.
[24]
Zhang Q, Li Y, Hu Q, et al.Smartphone surface plasmon resonance imaging for the simultaneous and sensitive detection of acute kidney injury biomarkers with noninvasive urinalysis [J].Lab Chip, 2022, 22(24): 4941-4949.
[25]
Bi X, Lin L, Chen Z, et al.Artificial intelligence for surfaceenhanced raman spectroscopy [J].Small Methods, 2024, 8(1): e2301243.
[26]
Bauvois B, Susin SA.Revisiting neutrophil gelatinase-associated lipocalin (NGAL) in cancer: saint or sinner? [J].Cancers(Basel), 2018, 10(9): 336.
[27]
Jiang MW, Xie H, Zhu JY, et al.Molecular form-specific immunoassays for neutrophil gelatinase-associated lipocalin by surface-enhanced raman spectroscopy [J].Sens Actuators B Chem, 2019, 297: 126742.
[28]
Rajabi S, Saberi S, Najafipour H, et al.Interaction of estradiol and renin-angiotensin system with microRNAs-21 and -29 in renal fibrosis: focus on TGF-β/Smad signaling pathway [J].Mol Biol Rep, 2024, 51(1): 137.
[29]
Bharti N, Agrawal V, Kamthan S, et al.Blood TGF-β1 and miRNA-21-5p levels predict renal fibrosis and outcome in IgA nephropathy [J].Int Urol Nephrol, 2023, 55(6): 1557-1564.
[30]
Nadeem RI, Aboutaleb AS, Younis NS, et al.Diosmin mitigates gentamicin-induced nephrotoxicity in rats: insights on miR-21 and -155 expression, Nrf2/HO-1 and p38-MAPK/NF-κB pathways [J].Toxics, 2023, 11(1): 48.
[31]
Yun CY, Lim JH, Oh JH, et al.Urinary exosomal microRNA-21 as a marker for scrub typhus-associated acute kidney injury[J].Genet Test Mol Biomarkers, 2021, 25(2): 140-144.
[32]
Huang X, Li J, Lu M, et al.Point-of-care testing of microrna based on personal glucose meter and dual signal amplification to evaluate drug-induced kidney injury [J].Anal Chim Acta,2020, 1112: 72-79.
[33]
Wang S, Huang H, Wang X, et al.Recent advances in personal glucose meter-based biosensors for food safety hazard detection[J].Foods, 2023, 12(21): 3947.
[34]
Xu Y, Chen J, Sui X, et al.Ultra-sensitive electrochemiluminescent biosensor for mirna based on CRISPR/Cas13a trans-cleavage-triggered hybridization chain reaction and magnetic-assisted enrichment [J].Mikrochim Acta, 2023, 190(10): 393.
[35]
张晓青, 唐雯.基于临床化验指标重新计算的生物标记物在预测腹膜透析患者预后中的作用研究进展[J/OL].中华肾病研究电子杂志, 2024, 13(4): 213-218.
[36]
Kang H, Stiles WR, Baek Y, et al.Renal clearable theranostic nanoplatforms for gastrointestinal stromal tumors [ J].Adv Mater, 2020, 32(6): e1905899.
[37]
Li D, Ushakova EV, Rogach AL, et al.Optical properties of carbon dots in the deep-red to near-infrared region are attractive for biomedical applications [J].Small, 2021, 17(43): e2102325.
[38]
Huang J, Li J, Lyu Y, et al.Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury [J].Nat Mater, 2019, 18(10): 1133-1143.
[39]
Dorshow RB, Debreczeny MP, Goldstein SL, et al.Clinical validation of the novel fluorescent glomerular filtration rate tracer agent relmapirazin (MB-102) [J].Kidney Int, 2024, 106(4): 679-687.
[40]
Liu S, Wang T, Zheng X, et al.On the imaging depth limit of photoacoustic tomography in the visible and first near-infrared windows [J].Opt Express, 2024, 32(4): 5460-5480.
[41]
Gao H, Sun L, Li J, et al.Illumination of hydroxyl radical in kidney injury and high-throughput screening of natural protectants using a fluorescent/photoacoustic probe [J].Adv Sci (Weinh),2023, 10(33): e2303926.
[1] 陈工泽, 宋佳, 陈文玮, 胡伟航, 来鑫乐, 杨凯, 龚仕金. 静脉淤血超声评分与脓毒症患者急性肾损伤的相关性研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(06): 465-472.
[2] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[3] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[4] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[5] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[6] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国肝移植受者肾损伤管理临床实践指南(2023版)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 276-288.
[7] 张可颖, 冀雨薇, 付章宁, 张益帆, 王晓晨, 杨滟, 陈香美, 蔡广研, 洪权. 人参皂苷Rb1 预处理间充质干细胞的转录组分析及急性肾损伤治疗关键基因挖掘[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 26-33.
[8] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[9] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[10] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[11] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[12] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[13] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[14] 崔秋子, 姚红曼, 艾迎春. 监测NLR、PLR、CAR、白蛋白、血钙及血糖指标水平对急性胰腺炎患者急性肾损伤的预测价值分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 244-248.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要