[1] |
Rossiter A, La A, Koyner JL, et al.New biomarkers in acute kidney injury [J].Crit Rev Clin Lab Sci, 2024, 61(1): 23-44.
|
[2] |
张轶男, 朱国贞.急性肾损伤向慢性肾脏病转变研究进展[J/OL].中华肾病研究电子杂志, 2024, 13(2): 106-112.
|
[3] |
Xiang D, Liu Z, Wu M, et al.Enhanced piezo-photoelectric catalysis with oriented carrier migration in asymmetric Au-ZnO nanorod array [J].Small, 2020, 16(18): e1907603.
|
[4] |
Kot K, Kupnicka P, Witulska O, et al.Potential biomarkers in diagnosis of renal acanthamoebiasis [J].Int J Mol Sci, 2021,22(12): 6583.
|
[5] |
Bullen AL, Katz R, Jotwani V, et al.Biomarkers of kidney tubule health, ckd progression, and acute kidney injury in sprint(systolic blood pressure intervention trial) participants [J].Am J Kidney Dis, 2021, 78(3): 361-368.
|
[6] |
Wen Y, Parikh CR.Current concepts and advances in biomarkers of acute kidney injury [J].Crit Rev Clin Lab Sci,2021, 58(5): 354-368.
|
[7] |
Fazel M, Sarveazad A, Mohamed Ali K, et al.Accuracy of urine kidney injury molecule-1 in predicting acute kidney injury in children; a systematic review and meta-analysis [J].Arch Acad Emerg Med, 2020, 8(1): e44.
|
[8] |
Zou C, Wang C, Lu L.Advances in the study of subclinical aki biomarkers [J].Front Physiol, 2022, 13: 960059.
|
[9] |
Schulz CA, Engström G, Nilsson J, et al.Plasma kidney injury molecule-1 (p-KIM-1) levels and deterioration of kidney function over 16 years [J].Nephrol Dial Transplant, 2020, 35(2): 265-273.
|
[10] |
Kwon TJ, Jang E, Lee DS, et al.Development of a noninvasive KIM-1-based live-imaging technique in the context of a druginduced kidney-injury mouse model [J].ACS Appl Bio Mater,2021, 4(2): 1508-1514.
|
[11] |
Shaoxiong Z, Zhou X, Qin Y, et al.Establishment of a timeresolved immunoassay for acute kidney injury based on the detection of KIM-1 [J].J Clin Lab Anal, 2022, 36(9): e24603.
|
[12] |
Yin Z, Liu C, Yi Y, et al.A label-free electrochemical immunosensor based on PdPtCu@bp bilayer nanosheets for pointof-care kidney injury molecule-1 testing [J].J Electroanalyt Chem, 2022, 917: 116420.
|
[13] |
Liu Y, He X, Lian Z, et al.Rapid and sensitive detection of urinary KIM-1 using fully printed photonic crystal microarrays[J].Nano Res, 2024, 17(5): 4329-4337.
|
[14] |
Wiraja C, Mori Y, Ichimura T, et al.Nephrotoxicity assessment with human kidney tubuloids using spherical nucleic acid-based mrna nanoflares [J].Nano Lett, 2021, 21(13): 5850-5858.
|
[15] |
Lupu L, Rozenfeld KL, Zahler D, et al.Detection of renal injury following primary coronary intervention among ST-segment elevation myocardial infarction patients: doubling the incidence using neutrophil gelatinase-associated lipocalin as a renal biomarker [J].J Clin Med, 2021, 10(10): 2120.
|
[16] |
Gupta B, Tiwari P, Subramanian A, et al.Evaluation of plasma and urine neutrophil gelatinase-associated lipocalin (NGAL) as an early diagnostic marker of acute kidney injury (AKI) in critically ill trauma patients [J].J Anaesthesiol Clin Pharmacol, 2023, 39(2): 292-301.
|
[17] |
Gambino C, Piano S, Stenico M, et al.Diagnostic and prognostic performance of urinary neutrophil gelatinase-associated lipocalin in patients with cirrhosis and acute kidney injury [J].Hepatology, 2023, 77(5): 1630-1638.
|
[18] |
Xiao Z, Huang Q, Yang Y, et al.Emerging early diagnostic methods for acute kidney injury [J].Theranostics, 2022, 12(6): 2963-2986.
|
[19] |
Brasiunas B, Popov A, Lisyte V, et al.ZnO nanostructures: a promising frontier in immunosensor development [J].Biosens Bioelectron, 2024, 246: 115848.
|
[20] |
Yang Y, Huang Q, Xiao Z, et al.Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer [J].Mater Today Bio, 2022, 13: 100218.
|
[21] |
Cho CH, Kim JH, Song DK, et al.An affinity peptideincorporated electrochemical biosensor for the detection of neutrophil gelatinase-associated lipocalin[ J ].Biosens Bioelectron, 2019, 142: 111482.
|
[22] |
Topor CV, Puiu M, Bala C.Strategies for surface design in surface plasmon resonance (SPR) sensing [J].Biosensors(Basel), 2023, 13(4): 465.
|
[23] |
Huo Z, Li Y, Chen B, et al.Recent advances in surface plasmon resonance imaging and biological applications [J].Talanta, 2023, 255: 124213.
|
[24] |
Zhang Q, Li Y, Hu Q, et al.Smartphone surface plasmon resonance imaging for the simultaneous and sensitive detection of acute kidney injury biomarkers with noninvasive urinalysis [J].Lab Chip, 2022, 22(24): 4941-4949.
|
[25] |
Bi X, Lin L, Chen Z, et al.Artificial intelligence for surfaceenhanced raman spectroscopy [J].Small Methods, 2024, 8(1): e2301243.
|
[26] |
Bauvois B, Susin SA.Revisiting neutrophil gelatinase-associated lipocalin (NGAL) in cancer: saint or sinner? [J].Cancers(Basel), 2018, 10(9): 336.
|
[27] |
Jiang MW, Xie H, Zhu JY, et al.Molecular form-specific immunoassays for neutrophil gelatinase-associated lipocalin by surface-enhanced raman spectroscopy [J].Sens Actuators B Chem, 2019, 297: 126742.
|
[28] |
Rajabi S, Saberi S, Najafipour H, et al.Interaction of estradiol and renin-angiotensin system with microRNAs-21 and -29 in renal fibrosis: focus on TGF-β/Smad signaling pathway [J].Mol Biol Rep, 2024, 51(1): 137.
|
[29] |
Bharti N, Agrawal V, Kamthan S, et al.Blood TGF-β1 and miRNA-21-5p levels predict renal fibrosis and outcome in IgA nephropathy [J].Int Urol Nephrol, 2023, 55(6): 1557-1564.
|
[30] |
Nadeem RI, Aboutaleb AS, Younis NS, et al.Diosmin mitigates gentamicin-induced nephrotoxicity in rats: insights on miR-21 and -155 expression, Nrf2/HO-1 and p38-MAPK/NF-κB pathways [J].Toxics, 2023, 11(1): 48.
|
[31] |
Yun CY, Lim JH, Oh JH, et al.Urinary exosomal microRNA-21 as a marker for scrub typhus-associated acute kidney injury[J].Genet Test Mol Biomarkers, 2021, 25(2): 140-144.
|
[32] |
Huang X, Li J, Lu M, et al.Point-of-care testing of microrna based on personal glucose meter and dual signal amplification to evaluate drug-induced kidney injury [J].Anal Chim Acta,2020, 1112: 72-79.
|
[33] |
Wang S, Huang H, Wang X, et al.Recent advances in personal glucose meter-based biosensors for food safety hazard detection[J].Foods, 2023, 12(21): 3947.
|
[34] |
Xu Y, Chen J, Sui X, et al.Ultra-sensitive electrochemiluminescent biosensor for mirna based on CRISPR/Cas13a trans-cleavage-triggered hybridization chain reaction and magnetic-assisted enrichment [J].Mikrochim Acta, 2023, 190(10): 393.
|
[35] |
张晓青, 唐雯.基于临床化验指标重新计算的生物标记物在预测腹膜透析患者预后中的作用研究进展[J/OL].中华肾病研究电子杂志, 2024, 13(4): 213-218.
|
[36] |
Kang H, Stiles WR, Baek Y, et al.Renal clearable theranostic nanoplatforms for gastrointestinal stromal tumors [ J].Adv Mater, 2020, 32(6): e1905899.
|
[37] |
Li D, Ushakova EV, Rogach AL, et al.Optical properties of carbon dots in the deep-red to near-infrared region are attractive for biomedical applications [J].Small, 2021, 17(43): e2102325.
|
[38] |
Huang J, Li J, Lyu Y, et al.Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury [J].Nat Mater, 2019, 18(10): 1133-1143.
|
[39] |
Dorshow RB, Debreczeny MP, Goldstein SL, et al.Clinical validation of the novel fluorescent glomerular filtration rate tracer agent relmapirazin (MB-102) [J].Kidney Int, 2024, 106(4): 679-687.
|
[40] |
Liu S, Wang T, Zheng X, et al.On the imaging depth limit of photoacoustic tomography in the visible and first near-infrared windows [J].Opt Express, 2024, 32(4): 5460-5480.
|
[41] |
Gao H, Sun L, Li J, et al.Illumination of hydroxyl radical in kidney injury and high-throughput screening of natural protectants using a fluorescent/photoacoustic probe [J].Adv Sci (Weinh),2023, 10(33): e2303926.
|