切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2025, Vol. 14 ›› Issue (06) : 301 -308. doi: 10.3877/cma.j.issn.2095-3216.2025.06.001

论著

尿激酶型纤溶酶原激活物受体调控小鼠肾单侧缺血再灌注损伤诱导的肾间质纤维化及血管新生
郑升春1,2, 陈艳1,2, 刘娇娜1, 刘冉1, 张紫玥1,2, 邢增辉1,2, 陈香美1, 洪权1,(), 孙雪峰1,()   
  1. 1100853 北京,解放军总医院第一医学中心肾脏病医学部,肾脏疾病全国重点实验室,国家慢性肾病临床医学研究中心,重症肾脏疾病器械与中西医药物研发北京市重点实验室,数智中医泛血管疾病防治北京市重点实验室,国家中医药管理局高水平中医药重点学科(zyyzdxk-2023310)
    2100853 北京,解放军医学院
  • 收稿日期:2025-09-22 出版日期:2025-12-28
  • 通信作者: 洪权, 孙雪峰
  • 基金资助:
    国家自然科学基金(82270758,82570862)

Urokinase-type plasminogen activator receptor regulated renal interstitial fibrosis and angiogenesis induced by unilateral ischemia-reperfusion injury in mice

Shengchun Zheng1,2, Yan Chen1,2, Jiaona Liu1, Ran Liu1, Ziyue Zhang1,2, Zenghui Xing1,2, Xiangmei Chen1, Quan Hong1,(), Xuefeng Sun1,()   

  1. 1Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310)
    2Chinese PLA Medical School; Beijing 100853, China
  • Received:2025-09-22 Published:2025-12-28
  • Corresponding author: Quan Hong, Xuefeng Sun
引用本文:

郑升春, 陈艳, 刘娇娜, 刘冉, 张紫玥, 邢增辉, 陈香美, 洪权, 孙雪峰. 尿激酶型纤溶酶原激活物受体调控小鼠肾单侧缺血再灌注损伤诱导的肾间质纤维化及血管新生[J/OL]. 中华肾病研究电子杂志, 2025, 14(06): 301-308.

Shengchun Zheng, Yan Chen, Jiaona Liu, Ran Liu, Ziyue Zhang, Zenghui Xing, Xiangmei Chen, Quan Hong, Xuefeng Sun. Urokinase-type plasminogen activator receptor regulated renal interstitial fibrosis and angiogenesis induced by unilateral ischemia-reperfusion injury in mice[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2025, 14(06): 301-308.

目的

探讨尿激酶型纤溶酶原激活物受体(urokinase-type plasminogen activator receptor,uPAR)是否会影响小鼠肾单侧缺血再灌注损伤(unilateral ischemia-reperfusion injury,uIRI)诱导的肾间质纤维化及血管新生。

方法

选取C57BL/6J背景的雌性8~10周龄野生型(wild type,WT)小鼠和uPAR基因敲除(uPAR-knockout, uPAR-ko)小鼠构建肾uIRI模型。实验小鼠分为4组:野生假手术组(WT sham组)、野生单侧缺血再灌注组(WT uIRI组)、uPAR-ko假手术组(uPAR-ko sham组)和uPAR-ko单侧缺血再灌注组(uPAR-ko uIRI组),5只/组。分别于造模后1 d、3 d、14 d对小鼠取材,检测血清肌酐、血尿素氮和肾脏组织病理学改变;以天狼猩红染色检测肾组织胶原沉积面积,Western印迹法、RT-qPCR和免疫组织化学检测肾组织Ⅰ型胶原蛋白、波形蛋白、E钙黏蛋白、α-平滑肌肌动蛋白及内皮黏蛋白等表达;以免疫荧光检测肾组织血管新生标志物CD31表达。采用双因素方差分析法进行组间比较。

结果

与WT sham组和uPAR-ko sham组分别比较,WT uIRI组和uPAR-ko uIRI组小鼠造模后1 d和3 d的血清肌酐、血尿素氮及肾小管损伤评分均升高(P均<0.05)。与WT uIRI组比较,uPAR-ko uIRI组小鼠造模后1 d和3 d的血清肌酐、血尿素氮及肾小管损伤评分均较高,但造模后14 d的血尿素氮较低(P均<0.05)。与WT sham组和uPAR-ko sham组分别比较,WT uIRI组与uPAR-ko uIRI组小鼠造模14 d后肾组织胶原面积、Ⅰ型胶原蛋白、波形蛋白和α-平滑肌肌动蛋白的蛋白质及mRNA表达均较高,而E钙黏蛋白、内皮黏蛋白及CD31表达均较低(P均<0.05)。与WT uIRI组比较,uPAR-ko uIRI组小鼠的肾组织胶原面积、以及Ⅰ型胶原蛋白、波形蛋白和α-平滑肌肌动蛋白的蛋白质及mRNA表达均较高,而E钙黏蛋白、内皮黏蛋白及CD31表达均较低(P均<0.05)。

结论

uPAR缺失会加重小鼠肾uIRI诱导的肾功能损害及肾间质纤维化,并减少肾脏的血管新生。

Objective

To investigate whether urokinase-type plasminogen activator receptor (uPAR) affected renal interstitial fibrosis and angiogenesis induced by renal unilateral ischemia-reperfusion injury (uIRI) in mice.

Methods

Female wild-type (WT) mice and uPAR-knockout (uPAR-ko) mice aged 8-10 weeks with C57BL/6J background were selected to construct the renal uIRI model. The experimental mice were divided into four groups: wild-type sham operation group (WT sham group), WT uIRI group, uPAR-ko sham group, and uPAR-ko uIRI group, with five mice in each group. The mice were sampled on days 1, 3, and 14 after modeling to detect serum creatinine, blood urea nitrogen, and renal histopathological changes. Sirius red staining was used to detect collagen deposition area in renal tissues. Western blotting, RT-qPCR, and immunohistochemistry were used to detect the expression of type Ⅰ collagen, vimentin, E-cadherin, α-smooth muscle actin, and endomucin in renal tissues. Immunofluorescence was used to detect the expression of CD31, a marker of angiogenesis, in renal tissues. Statistical comparisons between groups were performed using the two-way analysis of variance.

Results

Compared with the WT sham group and the uPAR-ko sham group, respectively, the WT uIRI group and the uPAR-ko uIRI group showed higher levels of serum creatinine, blood urea nitrogen, and renal tubular injury scores at both 1 day and 3 days after modeling (all P< 0.05). Compared with the WT uIRI group, the uPAR-ko uIRI group exhibited higher levels of serum creatinine, blood urea nitrogen, and renal tubular injury scores at both 1 day and 3 days after modeling, but lower level of blood urea nitrogen at 14 days after modeling (all P<0.05). Compared with the WT sham group and the uPAR-ko sham group, respectively, after 14 days of modeling, the WT uIRI group and the uPAR-ko uIRI group exhibited higher levels of renal tissue collagen area, and higher levels of mRNA and protein expressions of type I collagen, vimentin, and α-smooth muscle actin, but lower levels of protein expressions of E-cadherin, endomucin, and CD31 (all P< 0.05). Compared with the WT uIRI group, the uPAR-ko uIRI group displayed higher level of renal tissue collagen area, and higher levels of protein and mRNA expressions of type I collagen, vimentin, and α-smooth muscle actin, while the protein expressions of E-cadherin, endothelial cadherin, and CD31 were lower (all P< 0.05).

Conclusion

The deficiency of uPAR could exacerbate the kidney dysfunction and renal interstitial fibrosis induced by uIRI, as well as reduced renal angiogenesis in mice.

表1 实时荧光定量逆转录聚合酶链式反应引物序列
图1 缺血再灌注术后各组小鼠肾功能水平注:WT:野生小鼠;uPAR-ko:uPAR基因敲除小鼠;sham:假手术组;uIRI 1d:单侧肾脏缺血再灌注损伤术后1 d;uIRI 3d:单侧肾脏缺血再灌注损伤术后3 d;uIRI 14d:单侧肾脏缺血再灌注损伤术后14 d;A:各组小鼠血清肌酐水平;B:各组小鼠血尿素氮水平;组间差异采用双因素方差分析;与WT sham组比较,aP<0.05;与uPAR-ko sham组比较,bP<0.05;与缺血再灌注术后1 d WT uIRI组比较,cP<0.05;与缺血再灌注术后3 d WT uIRI组比较,dP<0.05;与缺血再灌注术后14 d WT uIRI组比较,eP<0.05
图2 小鼠肾单侧缺血再灌注损伤术后病理损伤的动态变化及小管损伤评分注:uIRI 1 d:单侧肾脏缺血再灌注损伤术后1 d;uIRI 3 d:单侧肾脏缺血再灌注损伤术后3 d;uIRI 14 d:单侧肾脏缺血再灌注损伤术后14 d;比例尺=100 μm;组间差异采用双因素方差分析;与WT sham组比较,aP<0.05;与uPAR-ko sham组比较,bP<0.05;与缺血再灌注术后1 d WT uIRI组比较,cP<0.05;与缺血再灌注术后3 d WT uIRI组比较,dP<0.05;与缺血再灌注术后14 d WT uIRI组比较,eP<0.05
图3 小鼠肾单侧缺血再灌注术后14 d代表性天狼猩红染色图及半定量分析注:比例尺=100μm;组间差异采用双因素方差分析;与WT sham组比较,aP<0.05;与uPAR-ko sham组比较,bP<0.05;与WT uIRI组比较,cP<0.05
图4 各组小鼠纤维化标志物的蛋白表达水平及半定量分析注:Collagen Ⅰ:Ⅰ型胶原蛋白;Vimentin:波形蛋白;E-cadherin:E钙黏蛋白;β-actin:β-肌动蛋白;组间差异采用双因素方差分析;与WT sham组比较,aP<0.05;与uPAR-ko sham组比较,bP<0.05;与WT uIRI组比较,cP<0.05
图5 各组小鼠纤维化标志物mRNA表达水平及半定量分析注:Collagen Ⅰ:Ⅰ型胶原;Vimentin:波形蛋白;α-SMA:α-平滑肌肌动蛋白;组间差异采用双因素方差分析;与WT sham组比较,aP<0.05;与uPAR-ko sham组比较,bP<0.05;与WT uIRI组比较,cP<0.05
图6 各组纤维化标志物免疫组化代表图及半定量分析注:Collagen Ⅰ:Ⅰ型胶原;Vimentin:波形蛋白;α-SMA:α-平滑肌肌动蛋白;比例尺=100 μm;组间差异采用双因素方差分析;与WT sham组比较,aP<0.05;与uPAR-ko sham组比较,bP<0.05;与WT uIRI组比较,cP<0.05
图7 各组小鼠血管相关标志物代表图及半定量分析注:Endomucin:内皮黏蛋白;A:内皮黏蛋白的代表性免疫组化染色图片及半定量分析结果,比例尺=100 μm;B:血管新生标志物CD31的代表性免疫荧光染色图片及半定量分析结果,比例尺=20 μm;组间差异采用双因素方差分析;与WT sham组比较,aP<0.05;与uPAR-ko sham组比较,bP<0.05;与WT uIRI组比较,cP<0.05
[1]
Chawla LS, Eggers PW, Star RA, et al. Acute kidney injury and chronic kidney disease as interconnected syndromes [J]. N Engl J Med, 2014, 371(1): 58-66.
[2]
See EJ, Jayasinghe K, Glassford N, et al. Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure [J]. Kidney Int, 2019, 95(1): 160-172.
[3]
Kumar S. Cellular and molecular pathways of renal repair after acute kidney injury [J]. Kidney Int, 2018, 93(1): 27-40.
[4]
Sudhini YR, Wei C, Reiser J. suPAR: an inflammatory mediator for kidneys [J]. Kidney Dis (Basel), 2022, 8(4): 265-274.
[5]
Kanno Y. The uPA/uPAR system orchestrates the inflammatory response, vascular homeostasis, and immune system in fibrosis progression [J]. Int J Mol Sci, 2023, 24(2): 1796.
[6]
Huang MJ, Ji YW, Chen JW, et al. Targeted VEGFA therapy in regulating early acute kidney injury and late fibrosis [J]. Acta Pharmacol Sin, 2023, 44(9): 1815-1825.
[7]
Basile DP, Friedrich JL, Spahic J, et al. Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury [J]. Am J Physiol Renal Physiol, 2011, 300(3): F721-F733.
[8]
Venkatachalam MA, Weinberg JM, Kriz W, et al. Failed tubule recovery, AKI-CKD transition, and kidney disease progression [J]. J Am Soc Nephrol, 2015, 26(8): 1765-1776.
[9]
张轶男,朱国贞. 急性肾损伤向慢性肾脏病转变研究进展[J/OL]. 中华肾病研究电子杂志2024, 13(2): 106-112.
[10]
Manetti M, Rosa I, Milia AF, et al. Inactivation of urokinase-type plasminogen activator receptor (uPAR) gene induces dermal and pulmonary fibrosis and peripheral microvasculopathy in mice: a new model of experimental scleroderma? [J]. Ann Rheum Dis, 2014, 73(9): 1700-1709.
[11]
Zhang G, Kim H, Cai X, et al. Urokinase receptor deficiency accelerates renal fibrosis in obstructive nephropathy [J]. J Am Soc Nephrol, 2003, 14(5): 1254-1271.
[12]
Zhang G, Kim H, Cai X, et al. Urokinase receptor modulates cellular and angiogenic responses in obstructive nephropathy [J]. J Am Soc Nephrol, 2003, 14(5): 1234-1253.
[13]
Smith HW, Marshall CJ. Regulation of cell signalling by uPAR [J]. Nat Rev Mol Cell Biol, 2010, 11(1): 23-36.
[14]
Larusch GA, Merkulova A, Mahdi F, et al. Domain 2 of uPAR regulates single-chain urokinase-mediated angiogenesis through β1-integrin and VEGFR [J]. Am J Physiol Heart Circ Physiol, 2013, 305(3): H305-H320.
[15]
LaRusch GA, Mahdi F, Shariat-Madar Z, et al. Factor XII stimulates ERK1/2 and Akt through uPAR, integrins, and the EGFR to initiate angiogenesis [J]. Blood, 2010, 115(24): 5111-5120.
[16]
Herkenne S, Paques C, Nivelles O, et al. The interaction of uPAR with VEGFR2 promotes VEGF-induced angiogenesis [J]. Sci Signal, 2015, 8(403): ra117.
[17]
Neugartn J, Golestaneh L. Gender and the prevalence and progression of renal disease [J]. Adv Chronic Kidney Dis, 2013, 20(5): 390-395.
[18]
Dixon EE, Wu H, Muto Y, et al. Spatially resolved transcriptomic analysis of acute kidney injury in a female murine model [J]. J Am Soc Nephrol, 2022, 33(2): 279-289.
[19]
Hayek SS, Sever S, Ko YA, et al. Soluble urokinase receptor and chronic kidney disease [J]. N Engl J Med, 2015, 373(20): 1916-1925.
[1] 曾繁润, 林永勇, 王君. 间充质干细胞外泌体促进创面血管新生机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 86-89.
[2] 陆剑瑜, 肖仕初, 夏照帆. 角质形成细胞来源的胞外囊泡在创面修复中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2021, 16(05): 441-444.
[3] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[4] 王静, 丁红. 益肾化湿颗粒对慢性肾衰竭大鼠肾组织转化生长因子-β1、α-平滑肌肌动蛋白表达的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 161-165.
[5] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[6] 唐全兴, 周畅. 维持性血液透析患者血清suPAR对动静脉内瘘狭窄发生的诊断价值[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 74-78.
[7] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J/OL]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[8] 洪权. 从血管内皮探讨糖尿病肾病的进展机制[J/OL]. 中华肾病研究电子杂志, 2023, 12(01): 60-60.
[9] 吴震宇, 胡亚芬, 董晓芬, 马远方. 血清CTGF、TGF-β1、MMP2水平对糖尿病肾病肾间质纤维化的预测分析[J/OL]. 中华肾病研究电子杂志, 2022, 11(06): 332-337.
[10] 尹丽丽, 管陈, 赵龙, 蒋伟, 秦振志, 李宸羽, 徐岩. 虾青素通过CCN1调节肾间质纤维化的潜在分子作用机制[J/OL]. 中华肾病研究电子杂志, 2022, 11(06): 318-326.
[11] 谭惠丰, 曹沛莲, 张慧, 强胜. Notch信号通路对IgA肾病大鼠外周血Th17细胞数量及功能的影响[J/OL]. 中华肾病研究电子杂志, 2021, 10(05): 259-264.
[12] 武世伦, 姚常玉, 许力, 狄治杉, 夏奇, 孙文兵, 孔健. 肿瘤相关巨噬细胞在肝细胞癌血管新生中的作用及研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 388-391.
[13] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J/OL]. 中华临床医师杂志(电子版), 2023, 17(09): 972-979.
[14] 蒲友敏, 赵洪雯, 申兵冰, 周强, 谢攀, 吴雄飞. TRPC6靶向miR-214负调控Caspase-1表达以改善肾缺血再灌注损伤的机制研究[J/OL]. 中华临床医师杂志(电子版), 2022, 16(01): 84-93.
[15] 李冰, 甘海润, 蔡建勋, 龙浩宇, 李露婷. 血管内皮细胞Ddx24基因条件性敲除鼠构建以及对视网膜血管新生的影响[J/OL]. 中华介入放射学电子杂志, 2022, 10(04): 429-435.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?