[1] |
Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD) [J]. Kidney Int Suppl, 2017, 7(1): 1-59.
|
[2] |
Evenepoel P, Opdebeeck B, David K, et al. Bone-vascular axis in chronic kidney disease [J]. Adv Chronic Kidney Dis, 2019, 26(6): 472-483.
|
[3] |
Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification [J]. Genes Dev, 1998, 12(9): 1260-1268.
|
[4] |
Oštrić M, Kukuljan M, Markić D, et al. Expression of bone-related proteins in vascular calcification and its serum correlations with coronary artery calcification score [J]. J Biol Regul Homeost Agents, 2019, 33(1): 29-38.
|
[5] |
Huang QX, Li JB, Huang N, et al. Elevated osteoprotegerin concentration predicts increased risk of cardiovascular mortality in patients with chronic kidney disease: a systematic review and meta-analysis [J]. Kidney Blood Press Res, 2020, 45(4): 565-575.
|
[6] |
Znorko B, Oksztulska-Kolanek E, Michaowska M, et al. Does the OPG/RANKL system contribute to the bone-vascular axis in chronic kidney disease? a systematic review [J]. Adv Med Sci, 2017, 62(1): 52-64.
|
[7] |
Panizo S, Cardus A, Encinas M, et al. RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway [J]. Circ Res, 2009, 104(9): 1041-1048.
|
[8] |
Lysitska A, Galanis N, Skandalos I, et al. Histology and immunohistochemistry of radial arteries are suggestive of an interaction between calcification and early atherosclerotic lesions in chronic kidney disease [J]. Medicina (Kaunas), 2021, 57(11): 1156.
|
[9] |
Ozkok A, Caliskan Y, Sakaci T, et al. Osteoprotegerin/RANKL axis and progression of coronary artery calcification in hemodialysis patients [J]. Clin J Am Soc Nephrol, 2012, 7(6): 965-973.
|
[10] |
Luo J, Yang Z, Ma Y, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption [J]. Nat Med, 2016, 22(5): 539-546.
|
[11] |
Carrillo-López N, Martínez-Arias L, Alonso-Montes C, et al. The receptor activator of nuclear factor κΒ ligand receptor leucine-rich repeat-containing G-protein-coupled receptor 4 contributes to parathyroid hormone-induced vascular calcification [J]. Nephrol Dial Transplant, 2021, 36(4): 618-631.
|
[12] |
Bisson SK, Ung RV, Mac-Way F. Role of the Wnt/β-catenin pathway in renal osteodystrophy [J]. Int J Endocrinol, 2018, 2018: 5893514.
|
[13] |
De Maré A, Maudsley S, Azmi A, et al. Sclerostin as regulatory molecule in vascular media calcification and the bone-vascular axis [J]. Toxins, 2019, 11(7): 428.
|
[14] |
Pietrzyk B, Wyskida K, Ficek J, et al. Relationship between plasma levels of sclerostin, calcium-phosphate disturbances, established markers of bone turnover, and inflammation in haemodialysis patients [J]. Int Urol Nephrol, 2019, 51(3): 519-526.
|
[15] |
Ferreira AC, Cotovio P, Aires I, et al. The role of bone volume, FGF23 and sclerostin in calcifications and mortality; a cohort study in CKD stage 5 patients [J]. Calcif Tissue Int, 2022, 110(2): 215-224.
|
[16] |
Wang XR, Yuan L, Zhang JJ, et al. Serum sclerostin values are associated with abdominal aortic calcification and predict cardiovascular events in patients with chronic kidney disease stages 3-5D [J]. Nephrology, 2017, 22(4): 286-292.
|
[17] |
De Maré A, Opdebeeck B, Neven E, at al. Sclerostin protects against vascular calcification development in mice [J]. J Bone Miner Res, 2022, 37(4): 687-699.
|
[18] |
Li X, Liu XL, Li X, et al. Dickkopf1 (Dkk1) alleviates vascular calcification by regulating the degradation of phospholipase D1 (PLD1) [J]. J Cardiovasc Transl Res, 2022, 15(6): 1327-1339.
|
[19] |
柴文秀. 腹膜透析患者血清sclerostin和Dickkopf-1与腹主动脉钙化的关联性研究[D].石家庄:河北医科大学,2018.
|
[20] |
Rakipovski G, Rolin B, Barascuk N, et al. A neutralizing antibody against DKK1 does not reduce plaque formation in classical murine models of atherosclerosis: Is the therapeutic potential lost in translation? [J]. Atherosclerosis, 2020, 314: 1-9.
|
[21] |
Benz K, Varga I, Neureiter D, et al. Vascular inflammation and media calcification are already present in early stages of chronic kidney disease [J]. Cardiovasc Pathol, 2017, 27: 57-67.
|
[22] |
Henze LA, Luong TTD, Boehme B, et al. Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells [J]. Aging (Albany NY), 2019, 11(15): 5445-5462.
|
[23] |
Lee HY, Lim S, Park S. Role of inflammation in arterial calcification [J]. Korean Circ J, 2021, 51(2): 114-125.
|
[24] |
Wang Y, Galli M, Shade Silver A, et al. IL1β and TNFα promote RANKL-dependent adseverin expression and osteoclastogenesis [J]. J Cell Sci, 2018, 131(11): jcs213967.
|
[25] |
Farquharson C, Berry JL, Mawer EB, et al. Ascorbic acid-induced chondrocyte terminal differentiation: the role of the extracellular matrix and 1,25-dihydroxyvitamin D [J]. Eur J Cell Biol, 1998, 76(2): 110-118.
|
[26] |
Altaf FM, Hering TM, Kazmi NH, et al. Ascorbate-enhanced chondrogenesis of ATDC5 cells [J]. Eur Cell Mater, 2006, 12(7): 64-70.
|
[27] |
Neven E, Dauwe S, De Broe ME, et al. Endochondral bone formation is involved in media calcification in rats and in men [J]. Kidney Int, 2007, 72(5): 574-581.
|
[28] |
Cozzolino M. Combined effects of ascorbic acid and phosphate on rat VSMC osteoblastic differentiation [J]. Nephrol Dial Transplant, 2012, 27(1): 122-127.
|
[29] |
张萌萌,张秀珍,邓伟民,等. 骨代谢生化指标临床应用专家共识(2020)[J]. 中国骨质疏松杂志,2020, 26(6): 781-796.
|
[30] |
McCabe KM, Zelt JG, Kaufmann M, et al. Calcitriol accelerates vascular calcification irrespective of vitamin K status in a rat model of chronic kidney disease with hyperphosphatemia and secondary hyperparathyroidism [J]. J Pharmacol Exp Ther, 2018, 366(3): 433-445.
|
[31] |
Nguyen-Yamamoto L, Tanaka KI, St-Arnaud R, et al. Vitamin D-regulated osteocytic sclerostin and BMP2 modulate uremic extraskeletal calcification [J]. JCI Insight, 2019, 4(13): e126467.
|
[32] |
Zheng Z, Shi H, Jia J, et al. Vitamin D supplementation and mortality risk in chronic kidney disease: a meta-analysis of 20 observational studies [J]. BMC Nephrol, 2013, 14: 199.
|
[33] |
熊琳,朱婷婷,张丽玲,等. 慢性肾病大鼠血管钙化与骨代谢标志物的相关性研究[J]. 中国比较医学杂志,2021, 31(1): 87-94.
|
[34] |
Bjørklund G, Svanberg E, Dadar M, et al. The role of matrix Gla protein (MGP) in vascular calcification [J]. Curr Med Chem, 2020, 27(10): 1647-1660.
|
[35] |
Evenepoel P, Claes K, Meijers B, et al. Poor vitamin K status is associated with low bone mineral density and increased fracture risk in end-stage renal disease [J]. J Bone Miner Res, 2019, 34(2): 262-269.
|
[36] |
Delanaye P, Krzesinski JM, Warling X, et al. Dephosphorylated-uncarboxylated matrix Gla protein concentration is predictive of vitamin K status and is correlated with vascular calcification in a cohort of hemodialysis patients [J]. BMC Nephrol, 2014, 15: 145.
|
[37] |
El Borolossy R, El-Farsy MS. The impact of vitamin K2 and native vitamin D supplementation on vascular calcification in pediatric patients on regular hemodialysis. A randomized controlled trial [J]. Eur J Clin Nutr, 2022, 76(6): 848-854.
|
[38] |
Tsai MT, Chen YY, Chang WJ, et al. Warfarin accelerated vascular calcification and worsened cardiac dysfunction in remnant kidney mice [J]. J Chin Med Assoc, 2018, 81(4): 324-330.
|
[39] |
Alappan HR, Kaur G, Manzoor S, et al. Warfarin accelerates medial arterial calcification in humans [J]. Arterioscler Thromb Vasc Biol, 2020, 40(5): 1413-1419.
|
[40] |
Lees JS, Chapman FA, Witham MD, et al. Vitamin K status, supplementation and vascular disease: a systematic review and meta-analysis [J]. Heart, 2019, 105(12): 938-945.
|
[41] |
Cannata-Andía JB, Martín-Carro B, Martín-Vírgala J, et al. Chronic kidney disease-mineral and bone disorders: pathogenesis and management [J]. Calcif Tissue Int, 2021, 108(4): 410-422.
|
[42] |
伍子贤,戴如璋,林少豪,等. 肾性骨病相关分子通路的研究进展[J].中国骨质疏松杂志,2020, 26(1): 146-151.
|
[43] |
Sprague SM, Bellorin-Font E, Jorgetti V, et al. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis [J]. Am J Kidney Dis, 2016, 67(4): 559-566.
|
[44] |
Evenepoel P, Bover J, Torres PU. Parathyroid hormone metabolism and signaling in health and chronic kidney disease [J]. Kidney Int, 2016, 90(6): 1184-1190.
|
[45] |
Cheng SL, Shao JS, Halstead LR, et al. Activation of vascular smooth muscle parathyroid hormone receptor inhibits Wnt/β-catenin signaling and aortic fibrosis in diabetic arteriosclerosis [J]. Circ Res, 2010, 107(2): 271-282.
|
[46] |
Villa-Bellosta R, Egido J. Phosphate, pyrophosphate, and vascular calcification: a question of balance [J]. Eur Heart J, 2017, 38(23): 1801-1804.
|
[47] |
Haarhaus M, Arnqvist HJ, Magnusson P. Calcifying human aortic smooth muscle cells express different bone alkaline phosphatase isoforms, including the novel B1x isoform [J]. J Vasc Res, 2013, 50(2): 167-174.
|
[48] |
Yan J, Li L, Zhang M, et al. Circulating bone-specific alkaline phosphatase and abdominal aortic calcification in maintenance hemodialysis patients [J]. Biomark Med, 2018, 12(11): 1231-1239.
|