切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2014, Vol. 03 ›› Issue (02) : 77 -81. doi: 10.3877/cma.j.issn.2095-3216.2014.02.005

专家论坛

动物模型与IgA 肾病的发病机制研究
王乾了1, 李贵森1,()   
  1. 1.610072 成都,四川省医学科学院、四川省人民医院肾脏内科暨肾脏病研究所
  • 出版日期:2014-04-15
  • 通信作者: 李贵森
  • 基金资助:
    国家自然科学基金项目(81170666)

Animal model and research on pathogenesis of IgA nephropathy

Qianliao Wang1, Guisen Li1,()   

  1. 1.Renal Department and Nephrology Institute, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu 610072, China
  • Published:2014-04-15
  • Corresponding author: Guisen Li
引用本文:

王乾了, 李贵森. 动物模型与IgA 肾病的发病机制研究[J/OL]. 中华肾病研究电子杂志, 2014, 03(02): 77-81.

Qianliao Wang, Guisen Li. Animal model and research on pathogenesis of IgA nephropathy[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2014, 03(02): 77-81.

IgA 肾病(IgAN)的发病机制仍然不清楚,目前较公认的是多重打击学说。 基于不同发病机制,已经建立了多种IgAN 的动物模型,包括被动免疫模型,主动免疫模型,继发IgAN 模型,以及自发性IgAN 模型和早发性IgAN 动物模型。 本文选择一些具有代表性的IgAN 动物模型并就其特点作一简单介绍,同时介绍一种新的动物模型,即α1K1-CD89Tg IgAN 小鼠模型。 这些不同的IgAN 动物模型在IgAN 发病机制的研究中发挥了重要作用。

Although the pathogenesis of IgA nephropathy (IgAN) is still unclear yet, multi-hit theory has become an accepted mechanism at present. Based on different pathogenetic mechanisms, a variety of IgAN animal models have been established, including passive immunity model, active immunity model,secondary IgAN model, spontaneous IgAN model, and early onset IgAN model. In this article, features of some representative animal models of IgAN will be reviewed briefly. Besides, a new animal model, namely α1K1-CD89Tg IgAN mouse model, will also be introduced. These different animal models of IgAN have played important roles in the research on IgAN pathogenesis.

表1 与IgA 肾病发病不同环节相关的动物模型举例及其特点
发病机制 动物模型 建模方法 特点
免疫复合物在肾小球系膜区沉积及肾脏损伤 大分子免疫复合物沉积 DNP[7]或右旋糖苷[8-9]与IgA形成复合物,注射给小鼠 肾脏表现为系膜增生,IgA和C3沉积,复合物大小、电荷等均影响
肾小球的亲和力 IgAN患者含低糖基化IgA1的复合物,经肾血管灌注给大鼠[18]。被动或主动血清病IgAN模型[9] 低糖基化IgA1表现出对大鼠肾脏更高的亲和力和致病力。抗原大小、电荷、抗原类型影响亲和力
循环复合物的亲和力 小鼠UG基因敲除,或表达反义UG载体[19-20] 小鼠体内出现IgAN,及循环内大量IgA-FN。UG可以阻止该复合物形成,防止其肾脏沉积致病。但人体内该基因的效应与小鼠不一致。
其他免疫球蛋白和补体共同沉积 将产生lgG2a抗Thy-1.1(ER4G)杂交瘤细胞转化为产生IgA抗Thy-1.1(ER4A)的杂交瘤细胞,注射入Wistar大鼠的肾动脉[21-22] 单纯ER4A不导致蛋白尿和肾脏补体活化,联合使用导致补体活化,肾小球系膜病变更突出
阿霉素或BSA预处理 阿霉素或BSA预处理BALB/c雌性小鼠,然后注射IgA及抗原[23] 阿霉素或BSA预处理会明显增强肾脏IgA和C3沉积
sCD89促进大分子复合形成 建立CD89(人)的转基因小鼠[24] sCD89促进循环中含IgA的大分子复合物形成,并在肾脏大量沉积,小鼠出现肾脏损伤
O-糖基化IgA类风湿因子(RF) 小鼠植入分泌6~19IgAanti-IgG2a的杂交瘤[25] 6~19IgA分子绞链区出现O-连接聚糖。小鼠表现出肾小球病变,系膜区IgA,IgG2a,和C3沉积。血和肾脏中大量IgA-IgG2a复合物形成
半乳糖缺乏IgA1的自身抗体形成 重组人Gd-IgA1特异性IgG 人Gd-IgA1与重组Gd-IgA1特异性IgG,在体外形成免疫复合物,给严重联合免疫缺陷小鼠注射,形成被动小鼠模型[26] Gd-IgA1-IgG免疫复合物在肾脏沉积导致肾小球系膜细胞增生,系膜基质增宽
糖基化缺陷IgA1产生 O-糖基化缺陷人IgA1 IgAN患者低糖基化的IgA1复合物,经肾血管灌注给大鼠[18]神经氨酸酶和半乳糖苷酶处理的IgA1经肾动脉注射给大鼠[27] 低糖基化IgA1表现出对大鼠肾脏更高的亲和力和致病力
N-半乳糖基化缺陷 建立β1,4半乳糖转移酶基因敲除小鼠(β4GalT-I-/-)[28] 小鼠出现蛋白尿,部分出现血尿,伴有系膜基质增生。肾脏IgA沉积突出,伴有IgG,IgM和C3沉积
广泛低唾液酸化 Gne M712T/M712T敲入(该基因编码细胞内唾液酸化过程的重要限速酶GNE/MNK)[29] 严重肾小球病变,足突融合,节段肾小球基底膜断裂。用唾液酸前体N-乙酰甘露糖胺(ManNac)可部分逆转其效应。但并类似于某种特定的肾病
1
Novak J, Julian BA, Mestecky J, et al. Glycosylation of IgA1 and pathogenesis of IgA nephropathy [J]. Semin Immunopathol, 2012,34(3):365-382.
2
Suzuki H, Kiryluk K, Novak J, et al. The pathophysiology of IgA nephropathy [J]. J Am Soc Nephrol,2011,22(10):1795-1803.
3
Mestecky J, Raska M, Julian BA, et al. IgA nephropathy:molecular mechanisms of the disease [J]. Annu Rev Pathol, 2013,8:217-240.
4
Wyatt RJ, Julian BA. IgA nephropathy [J]. N Engl J Med,2013,368(25):2402-2414.
5
Gharavi AG, Kiryluk K, Choi M, et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy [J]. Nat Genet,2011,43(4):321-327.
6
Yu XQ, Li M, Zhang H, et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy [J]. Nat Genet,2012,44(2):178-182.
7
Rifai A, Small PA, Jr., Teague PO, et al. Experimental IgA nephropathy [J]. J Exp Med,1979,150(5):1161-1173.
8
Isaacs K,Miller F,Lane B. Experimental model for IgA nephropathy[J]. Clin Immunol Immunopathol,1981,20(3):419-426.
9
Isaacs KL, Miller F. Antigen size and charge in immune complex glomerulonephritis. Ⅱ. Passive induction of immune deposits with dextran-anti-dextran immune complexes [J]. Am J Pathol, 1983,111(3):298-306.
10
Emancipator SN, Gallo GR, Lamm ME. Experimental IgA nephropathy induced by oral immunization [J]. J Exp Med, 1983,157(2):572-582.
11
Iida H, Izumino K, Matsumoto M, et al. Glomerular deposition of IgA in experimental hepatic cirrhosis [J]. Acta Pathol Jpn, 1985,35(3):561-567.
12
Imai H,Nakamoto Y,Asakura K,et al. Spontaneous glomerular IgA deposition in ddY mice: an animal model of IgA nephritis [J].Kidney Int,1985,27(5):756-761.
13
Tomino Y. IgA nephropathy:lessons from an animal model,the ddY mouse [J]. J Nephrol,2008,21(4):463-467.
14
Suzuki H, Suzuki Y, Yamanaka T, et al. Genome-wide scan in a novel IgA nephropathy model identifies a susceptibility locus on murine chromosome 10, in a region syntenic to human IGAN1 on chromosome 6q22-23 [J]. J Am Soc Nephrol,2005,16(5):1289-1299.
15
Imasawa T, Nagasawa R, Utsunomiya Y, et al. Bone marrow transplantation attenuates murine IgA nephropathy:role of a stem cell disorder [J]. Kidney Int,1999,56(5):1809-1817.
16
Suzuki H, Suzuki Y, Aizawa M, et al. Th1 polarization in murine IgA nephropathy directed by bone marrow-derived cells [J]. Kidney Int,2007,72(3):319-327.
17
Okazaki K, Suzuki Y, Otsuji M, et al. Development of a model of early-onset IgA nephropathy[J]. J Am Soc Nephrol,2012,23(8):1364-1374.
18
Hiki Y,Kokubo T,Iwase H,et al. Underglycosylation of IgA1 hinge plays a certain role for its glomerular deposition in IgA nephropathy[J]. J Am Soc Nephrol,1999,10(4):760-769.
19
Zhang Z, Kundu GC, Zheng F, et al. Insight into the physiological function(s) of uteroglobin by gene-knockout and antisense-transgenic approaches [J]. Ann N Y Acad Sci,2000,923:210-233.
20
Zheng F, Kundu GC, Zhang Z, et al. Uteroglobin is essential in preventing immunoglobulin A nephropathy in mice [J]. Nat Med,1999,5(9):1018-1025.
21
Van Dixhoorn MG, Gorter A, Sato T, et al. Induction of microhematuria by an IgA isotype switch variant of a monoclonal anti-Thy-1.1 antibody in the rat [J]. Kidney Int, 1996, 50(5):1612-1623.
22
Van Dixhoorn MG, Sato T, Muizert Y, et al. Combined administration of IgA and IgG anti-Thy-1 antibodies enhances renal inflammation in rats [J]. Kidney Int,1999,55(6):2299-2309.
23
Chen A, Ding SL, Sheu LF, et al. Experimental IgA nephropathy.Enhanced deposition of glomerular IgA immune complex in proteinuric states [J]. Lab Invest,1994,70(5):639-647.
24
Launay P, Grossetete B, Arcos-Fajardo M, et al. Fcalpha receptor(CD89) mediates the development of immunoglobulin A (IgA)nephropathy (Berger's disease). Evidence for pathogenic soluble receptor-Iga complexes in patients and CD89 transgenic mice [J]. J Exp Med,2000,191(11):1999-2009.
25
Novak J. Induction of IgA deposits and glomerulonephritis by IgA rheumatoid factor [J]. J Am Soc Nephrol,2012,23(3):371-373.
26
Novak L, Moldoveanu Z, Huang ZQ, et al. Assessment of glomerular changes in a passive mouse model of IgA nephropathy[J]. J Am Soc Nephrol,2013,24:570A.
27
Sano T, Hiki Y, Kokubo T, et al. Enzymatically deglycosylated human IgA1 molecules accumulate and induce inflammatory cell reaction in rat glomeruli [J]. Nephrol Dial Transplant, 2002, 17(1):50-56.
28
Nishie T, Miyaishi O, Azuma H, et al. Development of immunoglobulin A nephropathy-like disease in beta-1, 4-galactosyltransferase-I-deficient mice [J]. Am J Pathol, 2007, 170(2):447-456.
29
Kakani S, Yardeni T, Poling J, et al. The Gne M712T mouse as a model for human glomerulopathy [J]. Am J Pathol,2012,180(4):1431-1440.
30
Berthelot L, Papista C, Maciel TT, et al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors [J]. J Exp Med,2012,209(4):793-806.
[1] 唐瑞政, 李舒珏, 吴文起. 果蝇模型在肾结石研究中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 214-218.
[2] 张子旭, 郑俊炯, 罗云, 林天歆. 腹腔镜肾部分切除术离体猪肾培训模型的构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 277-283.
[3] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[4] 廖江荣, 吴秀琳, 陈光春, 郭亮, 吕慈, 蔡俊, 陈夕. 急性主动脉夹层并发急性肺损伤的研究新进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 488-492.
[5] 史彬, 司远. 益气和络方联合缬沙坦治疗气阴两虚兼血瘀证IgA 肾病的疗效观察[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 306-312.
[6] 国文凯, 纪鹏程, 毕靖茹, 谢院生. IgA 肾病的十种治疗措施[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 327-333.
[7] 赵静, 张嘉欣, 高言, 谢席胜. 微小病变肾病的发病机制及治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 207-212.
[8] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[9] 孙鼎, 王滨, 陈香美, 陈意志. 热应激肾病的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 170-176.
[10] 贾红艳, 王丹, 张冉冉, 马茜, 焦永红. 基于全外显子组测序探寻Möbius综合征发病机制的遗传学研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 146-154.
[11] 安亚楠, 王端然, 郭甜甜, 武希润. 幽门螺杆菌阴性胃黏膜相关淋巴组织淋巴瘤的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 268-274.
[12] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[13] 厉若男, 宋进, 王玉忠. 带状疱疹后神经痛的发病机制和诊治研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 199-205.
[14] 王可涵, 许涛, 周全红. 围术期谵妄与应激的研究进展[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 45-49.
[15] 陆远欣, 龚莉琳, 曾梦华. 肥胖与非酒精性脂肪肝研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 113-119.
阅读次数
全文


摘要