[1] |
Adachi J, Kumar C, Zhang Y, et al. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins [J]. Genome Biol, 2006,7(9): R80.
|
[2] |
Kentsis A, Monigatti F, Dorff K, et al. Urine proteomics for profiling of human disease using high accuracy mass spectrometry [J]. Proteomics Clin Appl, 2009,3(9): 1052-1061.
|
[3] |
Li QR, Fan KX, Li RX, et al. A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine [J]. Rapid Commun Mass Spectrom, 2010,24(6): 823-832.
|
[4] |
Di Meo A, Batruch I, Yousef AG, et al. An integrated proteomic and peptidomic assessment of the normal human urinome [J]. Clin Chem Lab Med, 2017,55(2): 237-247.
|
[5] |
Omenn GS, States DJ, Adamski M, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database [J]. Proteomics, 2005, 5(13): 3226-3245.
|
[6] |
Farrah T, Deutsch EW, Omenn GS, et al. A high-confidence human plasma proteome reference set with estimated concentrations in peptideatlas [J]. Mol Cell Proteomics, 2011, 10(9): M110.006353.
|
[7] |
Samavat S, Kalantari S, Nafar M, et al. Diagnostic urinary proteome profile for immunoglobulin a nephropathy [J]. Iran J Kidney Dis, 2015,9(3): 239-248.
|
[8] |
Mucha K, Bakun M, Jazwiec R, et al. Complement components, proteolysisrelated, and cell communication related proteins detected in urine proteomics are associated with IgA nephropathy [J]. Pol Arch Med Wewn, 2014,124(7-8): 380-386.
|
[9] |
Zhao S, Li R, Cai X, et al. The application of SILAC mouse in human body fluid proteomics analysis reveals protein patterns associated with IgA nephropathy [J]. Evid Based Complement Alternat Med, 2013,2013: 275390.
|
[10] |
Kalantari S, Rutishauser D, Samavat S, et al. Urinary prognostic biomarkers and classification of IgA nephropathy by high resolution mass spectrometry coupled with liquid chromatography [J]. PLoS One, 2013,8(12): e80830.
|
[11] |
Rocchetti MT, Papale M, d′Apollo AM, et al. Association of urinary laminin G-like 3 and free K light chains with disease activity and histological injury in IgA nephropathy [J]. Clin J Am Soc Nephrol, 2013,8(7): 1115-1125.
|
[12] |
Surin B, Sachon E, Rougier JP, et al. LG3 fragment of endorepellin is a possible biomarker of severity in IgA nephropathy [J]. Proteomics, 2013,13(1): 142-152.
|
[13] |
Sogabe A, Uto H, Kanmura S, et al. Correlation of serum levels of complement C4a desArg with pathologically estimated severity of glomerular lesions and mesangial hypercellularity scores in patients with IgA nephropathy [J]. Int J Mol Med, 2013,32(2): 307-314.
|
[14] |
Lewandowicz A, Bakun M, Kohutnicki R, et al. Changes in urine proteome accompanying diabetic nephropathy progression [J]. Pol Arch Med Wewn, 2015,125(1-2): 27-38.
|
[15] |
Zubiri I, Posada-Ayala M, Benito-Martin A, et al. Kidney tissue proteomics reveals regucalcin downregulation in response to diabetic nephropathy with reflection in urinary exosomes [J]. Transl Res, 2015,166(5): 474-484.
|
[16] |
Beck LH Jr, Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy [J]. N Engl J Med, 2009, 361(1): 11-21.
|
[17] |
Rood IM, Merchant ML, Wilkey DW, et al. Increased expression of lysosome membrane protein 2 in glomeruli of patients with idiopathic membranous nephropathy [J]. Proteomics, 2015, 15(21): 3722-3730.
|
[18] |
Cruz DN, de Cal M, Garzotto F, et al. Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population [J]. Intensive Care Med, 2010, 36(3): 444-451.
|
[19] |
Aregger F, Uehlinger DE, Witowski J, et al. Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury [J]. Kidney Int, 2014, 85(4): 909-919.
|
[20] |
Bonventre JV, Vaidya VS, Schmouder R, et al. Next-generation biomarkers for detecting kidney toxicity [J]. Nat Biotechnol, 2010, 28(5): 436-440.
|
[21] |
Bosso N, Chinello C, Picozzi SC, et al. Human urine biomarkers of renal cell carcinoma evaluated by ClinProt [J]. Proteomics Clin Appl, 2008, 2(7-8): 1036-1046.
|
[22] |
Sandim V, Pereira Dde A, Kalume DE, et al. Proteomic analysis reveals differentially secreted proteins in the urine from patients with clear cell renal cell carcinoma [J]. Urol Oncol, 2016, 34(1): 11-25.
|
[23] |
DI Carlo A. Matrix metalloproteinase-2 and -9 and tissue inhibitor of metalloproteinase-1 and -2 in sera and urine of patients with renal carcinoma [J]. Oncol Lett, 2014, 7(3): 621-626.
|
[24] |
Shalabi A, Abassi Z, Awad H, et al. Urinary NGAL and KIM-1: potential association with histopathologic features in patients with renal cell carcinoma [J]. World J Urol, 2013, 31(6): 1541-1545.
|
[25] |
Raimondo F, Morosi L, Corbetta S, et al. Differential protein profiling of renal cell carcinoma urinary exosomes [J]. Mol Biosyst, 2013, 9(6): 1220-1233.
|
[26] |
Lu Y, Liu X, Shi S, et al. Bioinformatics analysis of proteomic profiles during the process of anti-thy1 nephritis [J]. Mol Cell Proteomics, 2012, 11(4): M111 008755.
|
[27] |
Lu Y, Cai G, Cui S, et al. FHL2-driven molecular network mediated Septin2 knockdown inducing apoptosis in mesangial cell [J]. Proteomics, 2014, 14(21-22): 2485-2497.
|
[28] |
Lu Y, Chen X, Yin Z, et al. Screening for potential serum biomarkers in rat mesangial proliferative nephritis [J]. Proteomics, 2016, 16(6): 1015-1022.
|