切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2019, Vol. 08 ›› Issue (05) : 226 -229. doi: 10.3877/cma.j.issn.2095-3216.2019.05.007

所属专题: 文献

综述

组蛋白去乙酰化酶抑制剂与肾脏疾病
杜晓艳1, 冯宇颖2, 马良2,(), 付平2   
  1. 1. 610041 四川大学华西医院 临床药学部/药剂科
    2. 四川大学华西医院 肾内科
  • 收稿日期:2019-03-28 出版日期:2019-10-28
  • 通信作者: 马良
  • 基金资助:
    国家自然科学基金项目资助(81570668)

Histone deacetylase inhibitors and kidney diseases

Xiaoyan Du1, Yuying Feng2, Liang Ma2,(), Ping Fu2   

  1. 1. Department of Pharmacy; West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
    2. Department of Nephrology; West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2019-03-28 Published:2019-10-28
  • Corresponding author: Liang Ma
  • About author:
    Corresponding author: Ma Liang, Email:
引用本文:

杜晓艳, 冯宇颖, 马良, 付平. 组蛋白去乙酰化酶抑制剂与肾脏疾病[J/OL]. 中华肾病研究电子杂志, 2019, 08(05): 226-229.

Xiaoyan Du, Yuying Feng, Liang Ma, Ping Fu. Histone deacetylase inhibitors and kidney diseases[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2019, 08(05): 226-229.

组蛋白去乙酰化是组蛋白表观遗传学修饰的重要的方式之一。组蛋白去乙酰化酶(HDACs)作为调控基因的关键蛋白,其功能异常早已被证实与肿瘤、神经退行性病变、肾脏病等发生和发展关系密切,进而推动HDAC抑制剂(HDACi)的研发及临床应用。本文综述HDACs在肾脏病发生发展中的作用及HDACi在肾脏病治疗中的应用前景。

Histone deacetylation is one of the important ways of epigenetic modification of histones. Histone deacetylases (HDACs), as key proteins in regulating genes, has long been confirmed to be closely related to the occurrence and development of tumors, neurodegenerative diseases, and kidney diseases, promoting the development and clinical application of HDAC inhibitors (HDACi). This article reviewed the role of HDACs in the development and progression of kidney diseases, as well as the application prospect of HDACi in the treatment of kidney diseases.

[1]
Jones PA, Ohtani H, Chakravarthy A, et al. Epigenetic therapy in immune-oncology [J]. Nat Rev Cancer, 2019, 19(3): 151-161.
[2]
Emmett MJ, Lazar MA. Integrative regulation of physiology by histone deacetylase 3 [J]. Nat Rev Mol Cell Biol, 2019, 20(2): 102-115.
[3]
Liang T, Fang H. Structure, functions and selective inhibitors of HDAC6 [J]. Curr Top Med Chem, 2018, 18(28): 2429-2447.
[4]
Batchu SN, Brijmohan AS, Advani A. The therapeutic hope for HDAC6 inhibitors in malignancy and chronic disease [J]. Clin Sci, 2016, 130(12): 987-1003.
[5]
Kosciuk T, Wang M, Hong JY, et al. Updates on the epigenetic roles of sirtuins [J]. Curr Opin Chem Biol, 2019, 51: 18-29.
[6]
Sun L, Marin de Evsikova C, Bian K, et al. Programming and regulation of metabolic homeostasis by HDAC11 [J]. EBioMedicine, 2018, 33: 157-168.
[7]
Zupkovitz G, Lagger S, Martin D, et al. Histone deacetylase 1 expression is inversely correlated with age in the short-lived fish Nothobranchius furzeri [J]. Histochem Cell Biol, 2018, 150(3): 255-269.
[8]
Bacon T, Seiler C, Wolny M, et al. Histone deacetylase 3 indirectly modulates tubulin acetylation [J]. Biochem J, 2015, 472(3): 367-377.
[9]
Zhang CL, McKinsey TA, Chang S, et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy [J]. Cell, 2002, 110(4): 479-488.
[10]
Chen S, El-Dahr SS. Histone deacetylases in kidney development: implications for disease and therapy [J]. Pediatr Nephrol, 2013, 28(5): 689-698.
[11]
Qin HT, Li HQ, Liu F. Selective histone deacetylase small molecule inhibitors: recent progress and perspectives [J]. Expert Opin Ther Pat, 2017, 27(5): 621-636.
[12]
Shi Y, Xu L, Tang J, et al. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury [J]. Am J Physiol Renal Physiol, 2017, 312(3): F502-F515.
[13]
Tang J, Shi Y, Liu N, et al. Blockade of histone deacetylase 6 protects against cisplatin-induced acute kidney injury [J]. Clin Sci, 2018, 132(3): 339-359.
[14]
Feng Y, Huang R, Guo F, et al. Selective histone deacetylase 6 inhibitor 23BB alleviated rhabdomyolysis-induced acute kidney injury by regulating endoplasmic reticulum stress and apoptosis [J]. Front Pharmacol, 2018, 9: 274.
[15]
Marumo T, Hishikawa K, Yoshikawa M, et al. Epigenetic regulation of BMP7 in the regenerative response to ischemia [J]. J Am Soc Nephrol, 2008, 19(7): 1311-1320.
[16]
Zeisberg M, Hanai J, Sugimoto H, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury [J]. Nat Med, 2003, 9(7): 964-968.
[17]
Imai N, Hishikawa K, Marumo T, et al. Inhibition of histone deacetylase activates side population cells in kidney and partially reverses chronic renal injury [J]. Stem Cells, 2007, 25(10): 2469-2475.
[18]
de Boer IH. A new chapter for diabetic kidney disease [J]. N Engl J Med, 2017, 377(9): 885-887.
[19]
Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney [J]. Nat Rev Nephrol, 2017, 13(10): 629-646.
[20]
Advani A, Huang Q, Thai K, et al. Long-term administration of the histone deacetylase inhibitor vorinostat attenuates renal injury in experimental diabetes through an endothelial nitric oxide synthase-dependent mechanism [J]. Am J Pathol, 2011, 178(5): 2205-2214.
[21]
Gilbert RE, Huang Q, Thai K, et al. Histone deacetylase inhibition attenuates diabetes-associated kidney growth: potential role for epigenetic modification of the epidermal growth factor receptor [J]. Kidney Int, 2011, 79(12): 1312-1321.
[22]
Noh H, Oh EY, Seo JY, et al. Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury [J]. Am J Physiol Renal Physiol, 2009, 297(3): F729-F739.
[23]
Tan AY, Zhang T, Michaeel A, et al. Somatic mutations in renal cyst epithelium in autosomal dominant polycystic kidney disease [J]. J Am Soc Nephrol, 2018, 29(8): 2139-2156.
[24]
Cao Y, Semanchik N, Lee SH, et al. Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models [J]. Proc Natl Acad Sci USA, 2009, 106(51): 21819-21824.
[25]
Zhou X, Fan LX, Sweeney WE, et al. Sirtuin 1 inhibition delays cyst formation in autosomal-dominant polycystic kidney disease [J]. J Clin Invest, 2013, 123(7): 3084-3098.
[26]
Li Y, Zhang X, Polakiewicz RD, et al. HDAC6 is required for epidermal growth factor-induced beta-catenin nuclear localization [J]. J Biol Chem, 2008, 283(19): 12686-12690.
[27]
Pang M, Kothapally J, Mao H, et al. Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy [J]. Am J Physiol Renal Physiol, 2009, 297(4): F996-F1005.
[28]
Choi SY, Piao ZH, Jin L, et al. Piceatannol attenuates renal fibrosis induced by unilateral ureteral obstruction via downregulation of histone deacetylase 4/5 or p38-MAPK signaling [J]. PLoS One, 2016, 11(11): e0167340.
[29]
Marumo T, Hishikawa K, Yoshikawa M, et al. Histone deacetylase modulates the proinflammatory and -fibrotic changes in tubulointerstitial injury [J]. Am J Physiol Renal Physiol, 2010, 298(1): F133-F141.
[30]
Van Beneden K, Geers C, Pauwels M, et al. Comparison of trichostatin A and valproic acid treatment regimens in a mouse model of kidney fibrosis [J]. Toxicol Applied Pharmacol, 2013, 271(2): 276-284.
[1] 李怡泉, 谢宇斌, 胡宏, 张燕茹, 陈图锋. 基于生物信息学分析HDAC8在结肠癌中的临床意义及其与免疫浸润的关系[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 275-281.
[2] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[3] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国肝移植受者肾损伤管理临床实践指南(2023版)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 276-288.
[4] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[5] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[6] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[7] 刘俊, 陈客宏. 终末期肾脏病患者运动干预的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 219-225.
[8] 涂晓文. 糖尿病肾脏病的靶点药物研发进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 240-240.
[9] 何娅妮. 糖尿病肾脏病患者的血糖监测评估与降糖治疗[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 180-180.
[10] 王小龙, 吴杰, 段姝伟, 王超卉, 潘娜, 白圆圆, 李航天, 蔡广研. 不同等级体力活动对慢性肾脏病患者预后的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 121-128.
[11] 陆文琪, 赵艳茹, 李焕娣, 樊欣娜, 王佳, 李萍. 2型糖尿病患者血清SMAD2和SOX6表达及其与蛋白尿的关系[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 145-151.
[12] 张轶男, 朱国贞. 急性肾损伤向慢性肾脏病转变研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 106-112.
[13] 吴燕升, 张先闻, 王琳. 慢性肾脏病患者肠道微生态与免疫的关系研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 101-105.
[14] 肖伍豪, 刘抗寒. 晚期慢性肾脏病患者骨质疏松症的治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 92-96.
[15] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?