切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2025, Vol. 14 ›› Issue (02) : 97 -103. doi: 10.3877/cma.j.issn.2095-3216.2025.02.006

综述

热应激导致肾损伤的发病机制和防治进展
段颖洁1, 杜军霞1, 丁潇楠1, 任琴琴1, 陈飞1, 宋晨雯1, 田明威1, 张冬1, 朱晗玉1,()   
  1. 1. 100853 北京,解放军总医院第一医学中心肾脏病医学部、肾脏疾病全国重点实验室、国家慢性肾病临床医学研究中心、重症肾脏疾病器械与中西医药物研发北京市重点实验室、数智中医泛血管疾病防治北京市重点实验室、国家中医药管理局高水平中医药重点学科
  • 收稿日期:2025-04-21 出版日期:2025-04-28
  • 通信作者: 朱晗玉
  • 基金资助:
    国家自然科学基金(62271506)

Advances in pathogenesis and prevention and treatment of heat stress-induced kidney injury

Yingjie Duan1, Junxia Du1, Xiaonan Ding1, Qinqin Ren1, Fei Chen1, Chenwen Song1, Mingwei Tian1, Dong Zhang1, Hanyu Zhu1,()   

  1. 1. Department of Nephrology, First Medical Center of Chinese PLA General Hospital,State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for Prevention and Treatment of Panvascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing 100853, China
  • Received:2025-04-21 Published:2025-04-28
  • Corresponding author: Hanyu Zhu
引用本文:

段颖洁, 杜军霞, 丁潇楠, 任琴琴, 陈飞, 宋晨雯, 田明威, 张冬, 朱晗玉. 热应激导致肾损伤的发病机制和防治进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 97-103.

Yingjie Duan, Junxia Du, Xiaonan Ding, Qinqin Ren, Fei Chen, Chenwen Song, Mingwei Tian, Dong Zhang, Hanyu Zhu. Advances in pathogenesis and prevention and treatment of heat stress-induced kidney injury[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2025, 14(02): 97-103.

热应激导致肾损伤是由高温环境或热环境下高强度活动引发的肾功能障碍,但其具体的分子机制尚未完全确定。本文综述了热应激导致肾损伤的危险因素、发病机制、预警指标、早期诊断标准及主要防治手段,以便为热应激导致肾损伤的临床防治工作提供参考。

Heat stress-induced kidney injury is a renal dysfunction caused by high-temperature environments or intense activities in hot environments. However, its specific molecular mechanisms have not been fully elucidated. This article reviewed the risk factors, pathogenesis, early warning indicators, early diagnostic criteria, and main prevention and treatment measures for heat stress-induced kidney injury, in order to provide references for the clinical prevention and treatment of heat stress-induced kidney injury.

表1 热应激相关疾病
疾病 机制 症状
轻度
 热皮疹 由汗腺堵塞引起的表皮炎症性疾病 小而均匀的红斑丘疹疱状皮疹,伴皮肤瘙痒感,通常出现在容易闭塞或弯曲的部位,如颈部、胸部、腹股沟和腋窝
 热痉挛 体内电解质流失(钠耗竭) 四肢和腹壁肌肉痉挛,出汗、呼吸急促、呕吐、头晕、体温升高、口渴和心动过速
 热水肿 体表毛细血管扩张,血流速率增加,毛细血管滤过压力增加。 水肿(通常在手和脚)伴头晕、食欲不振和全身虚弱
 热晕厥 体内电解质丢失(尤其是钠消耗),以及一过性脑血流不足。 疲惫、烦躁不安、头晕、头痛或恶心、呕吐、脸色苍白、皮肤冰冷、呼吸急促浅促、脉搏急促无力。严重时会出现下肢和腹部肌肉抽搐、呼吸困难,甚至昏厥
中度
 热衰竭 类似于热痉挛 体温升高、出汗过多、疲劳、不适、眩晕、头痛、判断力下降、恶心和呕吐,有时还会出现肌肉痉挛、体位性眩晕和晕厥,但没有明显的神经损伤迹象
重度
 热射病 处于炎热、潮湿、无风的环境中和/ 或进行高强度训练或繁重的体力劳动会导致体温调节失衡,随后产热增加、热量吸收过度和散热受损 高热、无汗症和精神状态改变、多器官功能障碍综合征(肝肾功能不全、胃肠道损害、心血管功能不全)、凝血功能障碍、横纹肌溶解症和其他并发症(高钾血症、高磷血症、低钙血症和肌红蛋白尿症)
表2 热应激导致肾损伤的危险因素
图1 发病机制示意图
表3 肾损伤的生物标志物
[1]
Barletta JF, Palmieri TL, Toomey SA, et al. Management of heat-related illness and injury in the ICU: a concise definitive review [J]. Crit Care Med, 2024, 52(3): 362-375.
[2]
Sorensen C, Solomon CG, Hess J. Treatment and prevention of heat-related illness [J]. N Engl J Med, 2022, 387(15): 1404-1413.
[3]
Meade RD, Akerman AP, Notley SR, et al. Physiological factors characterizing heat-vulnerable older adults: a narrative review[J]. Environ Int, 2020, 144: 105909.
[4]
Omassoli J, Hill NE, Woods DR, et al. Variation in renal responses to exercise in the heat with progressive acclimatisation[J]. J Sci Med Sport, 2019, 22(9): 1004-1009.
[5]
Ebi KL, Capon A, Berry P, et al. Hot weather and heat extremes: health risks [J]. Lancet, 2021, 398(10301): 698-708.
[6]
Johnson RJ, Wesseling C, Newman LS, et al. Chronic kidney disease of unknown cause in agricultural communities [J]. N Engl J Med, 2019, 380(19): 1843-1852.
[7]
Liu SY, Song JC, Mao HD, et al. Expert consensus on the diagnosis and treatment of heat stroke in China [J]. Mil Med Res, 2020, 7(1): 1.
[8]
孙鼎, 王滨, 陈香美, 等. 热应激肾病的研究进展[J/OL].中华肾病电子研究杂志, 2024, 13(3): 170-176.
[9]
Romanello M, Napoli CD, Green C, et al. The 2023 report of the Lancet countdown on health and climate change: the imperative for a health-centred response in a world facing irreversible harms [J]. Lancet, 2023, 402(10419): 2346-2394.
[10]
Vicedo-Cabrera AM, Scovronick N, Sera F, et al. The burden of heat-related mortality attributable to recent human-induced climate change [J]. Nat Clim Chang, 2021, 11(6): 492-500.
[11]
Epstein Y, Yanovich R. Heatstroke [J]. N Engl J Med, 2019,380(25): 2449-2459.
[12]
Bouchama A, Abuyassin B, Lehe C, et al. Classic and exertional heatstroke [J]. Nat Rev Dis Primers, 2022, 8(1): 8.
[13]
李子瞻, 罗雪. 热射病的多器官受损表现及防治措施[J].中华老年多器官疾病杂志, 2023, 22(8): 624-628.
[14]
Paganini M, Markou-Pappas N, Della Corte F, et al. Heatwaves impact on prehospital emergency medicine: a qualitative study to improve sustainability and disaster preparedness in Veneto region,Northern Italy [J]. Sustainability, 2024, 16(16): 6911.
[15]
何嘉骐, 倪军, 张静. 热射病相关肾脏损伤的机制及研究进展[J]. 中华灾害救援医学, 2021, 9(1): 754-757, 767.
[16]
Wilkening A, Rüb C, Sylvester M, et al. Analysis of heatinduced protein aggregation in human mitochondria [J]. J Biol Chem, 2018, 293(29): 11537-11552.
[17]
胡玲玲, 倪军, 张静. 重度中暑相关血管内皮细胞损伤的机制及研究进展[J]. 中华灾害救援医学, 2022, 10(3): 165-169.
[18]
Hansson E, Glaser J, Jakobsson K, et al. Pathophysiological mechanisms by which heat stress potentially induces kidney inflammation and chronic kidney disease in sugarcane workers[J]. Nutrients, 2020, 12(6): 1639.
[19]
Zhang Z, Wu X, Zou Z, et al. Heat stroke: pathogenesis,diagnosis, and current treatment [J]. Ageing Res Rev, 2024,100: 102409.
[20]
Alaiya A, Alharbi BM, Shinwari Z, et al. Proteomics analysis of proteotoxic stress response in in-vitro human neuronal models[J]. Int J Mol Sci, 2024, 25(12): 6787.
[21]
De Vita A, Belmusto A, Di Perna F, et al. The impact of climate change and extreme weather conditions on cardiovascular health and acute cardiovascular diseases [J]. J Clin Med, 2024,13(3): 759.
[22]
Watanabe K, Ohtsuki T. Inhibition of HSF1 and SAFB granule formation enhances apoptosis induced by heat stress [J]. Int J Mol Sci, 2021, 22(9): 4982.
[23]
Du D, Lv W, Jing X, et al. Camel whey protein alleviates heat stress-induced liver injury by activating the Nrf2/HO-1 signaling pathway and inhibiting HMGB1 release [J]. Cell Stress Chaperones, 2022, 27(4): 449-460.
[24]
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death [J]. Cell Mol Immunol, 2021, 18(5): 1106-1121.
[25]
Yuan J, Ofengeim D. A guide to cell death pathways [J]. Nat Rev Mol Cell Biol, 2024, 25(5): 379-395.
[26]
杨倩, 叶琨. 细胞焦亡在肾脏疾病中的作用[J]. 医学信息,2023, 36(21): 178-183.
[27]
He S, Guo Y, Zhao J, et al. Ferulic acid protects against heat stress-induced intestinal epithelial barrier dysfunction in IEC-6 cells via the PI3K/Akt-mediated Nrf2/HO-1 signaling pathway[J]. Int J Hyperthermia, 2019, 35(1): 112-121.
[28]
Paszek A, Kardyńska M, Bagnall J, et al. Heat shock response regulates stimulus-specificity and sensitivity of the proinflammatory NF-κB signalling [J]. Cell Commun Signal,2020, 18(1): 77.
[29]
Yuan F, Cai J, Wu J, et al. Z-DNA binding protein 1 promotes heatstroke-induced cell death [J]. Science, 2022, 376(6593):609-615.
[30]
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms,biology and role in disease [J]. Nat Rev Mol Cell Biol, 2021,22(4): 266-282.
[31]
Luan Y, Huang E, Huang J, et al. Serum myoglobin modulates kidney injury via inducing ferroptosis after exertional heatstroke[J]. J Transl Int Med, 2023, 11(2): 178-188.
[32]
Wang Z, Zhu J, Zhang D, et al. The significant mechanism and treatments of cell death in heatstroke [J]. Apoptosis, 2024, 29(7-8): 967-980.
[33]
Hifumi T, Kondo Y, Shimizu K, et al. Heat stroke [J]. J Intensive Care, 2018, 6: 30.
[34]
House CM, Tipton MJ, Hopkins PM, et al. Thermoregulation and markers of muscle breakdown in malignant hyperthermia susceptible volunteers during an acute heat tolerance test [J]. J Sci Med Sport, 2019, 22(5): 586-590.
[35]
Goto H, Shoda S, Nakashima H, et al. Early biomarkers for kidney injury in heat-related illness patients: a prospective observational study at Japanese Self-Defense Force Fuji Hospital[J]. Nephrol Dial Transplant, 2023, 38(3): 644-654.
[36]
全军热射病防治专家组. 热射病急诊诊断与治疗专家共识(2021版)[J]. 中华急诊医学杂志, 2021, 30(11): 1290-1299.
[37]
Zhang Z, Heerspink HJL, Chertow GM, et al. Ambient heat exposure and kidney function in patients with chronic kidney disease: a post-hoc analysis of the DAPA-CKD trial [J]. Lancet Planet Health, 2024, 8(4): e225-e233.
[38]
McDermott BP, Smith CR, Butts CL, et al. Renal stress and kidney injury biomarkers in response to endurance cycling in the heat with and without ibuprofen [J]. J Sci Med Sport, 2018, 21(12): 1180-1184.
[39]
Moledina DG, Isguven S, McArthur E, et al. Plasma monocyte chemotactic protein-1 is associated with acute kidney injury and death after cardiac operations [J]. Ann Thorac Surg, 2017, 104(2): 613-620.
[40]
Molinari L, Del Rio-Pertuz G, Smith A, et al. Utility of biomarkers for sepsis-associated acute kidney injury staging [J].JAMA Netw Open, 2022, 5(5): e2212709.
[41]
Tseng MF, Chou CL, Chung CH, et al. Risk of chronic kidney disease in patients with heat injury: a nationwide longitudinal cohort study in Taiwan [J]. PLoS One, 2020, 15(7):e0235607.
[42]
国家慢性肾病临床医学研究中心. 中国急性肾损伤临床实践指南[J]. 中华医学杂志, 2023, 103(42): 3332-3366.
[43]
张萍, 杨莎, 张琳. 热射病患者发生急性肾损伤的危险因素分析及预测模型构建[J]. 西部医学, 2025, 37(1): 75-79.
[44]
苏奉仪. 热射病急性肾损伤的临床特征及预警指标分析[D]. 乌鲁木齐: 新疆医科大学, 2023.
[45]
王杨, 李世军. 表观遗传在热损伤疾病中的研究进展 [J].肾脏病与透析肾移植杂志, 2022, 31(4): 379-383.
[46]
全军热射病防治专家组. 军事训练防治中暑/热射病降温方法专家共识 [J]. 解放军医学杂志, 2023, 48(8): 871-878.
[47]
Laitano O, Leon LR, Roberts WO, et al. Controversies in exertional heat stroke diagnosis, prevention, and treatment [J].J Appl Physiol (1985), 2019, 127(5): 1338-1348.
[48]
Kobayashi K, Mimuro S, Sato T, et al. Dexmedetomidine preserves the endothelial glycocalyx and improves survival in a rat heatstroke model [J]. J J Anesth, 2018, 32(6): 880-885.
[49]
Fischer I, Barak B. Molecular and therapeutic aspects of hyperbaric oxygen therapy in neurological conditions [J].Biomolecules, 2020, 10(9): 1247-1263.
[1] 陈工泽, 宋佳, 陈文玮, 胡伟航, 来鑫乐, 杨凯, 龚仕金. 静脉淤血超声评分与脓毒症患者急性肾损伤的相关性研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(06): 465-472.
[2] 鲁嘉懿, 唐菲, 卢芬, 陶于洪. 儿童系统性红斑狼疮相关性急性胰腺炎的临床诊疗及预后分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(06): 635-643.
[3] 罗沙, 邱乐乐, 于祥, 冯哲, 蔡广研, 黄静. 无创容量评估新技术在急性肾损伤患者连续性肾脏替代治疗中的应用研究[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 61-67.
[4] 李菲, 郭晓夏, 郑悦, 郑爔, 李鑫成, 李文雄. 他汀类药物对甘油三酯葡萄糖指数增高的脓毒症相关急性肾损伤患者预后的影响[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 68-76.
[5] 张佳馨, 刘洋, 吴贞, 程庆砾, 敖强国. 高钠血症对老年院内急性肾损伤患者短期预后的影响[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 83-90.
[6] 张可颖, 冀雨薇, 付章宁, 张益帆, 王晓晨, 杨滟, 陈香美, 蔡广研, 洪权. 人参皂苷Rb1 预处理间充质干细胞的转录组分析及急性肾损伤治疗关键基因挖掘[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 26-33.
[7] 何许巍, 刘洋, 程庆砾, 敖强国. 急性肾损伤早期生物标志物即时检测的研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 48-52.
[8] 辛宇, 王常松, 于凯江. 重症肾脏:2024年度进展与展望[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 17-21.
[9] 王冉, 常炜, 杨毅, 徐静媛. 脓毒症休克液体复苏的晶体液种类对急性肾损伤影响的研究进展[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 100-104.
[10] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[11] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[12] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[13] 原江东, 周丽珍, 段鹏程, 许婕璇, 黎江, 卢慕荣. 国际标准化比值与脓毒症相关急性肾损伤患者死亡率的关系[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(01): 11-16.
[14] 赵秋灵, 李红平, 文皓, 周微薇, 罗宇, 何朝晖. 慢性肾脏病并发上消化道出血的研究进展[J/OL]. 中华胃肠内镜电子杂志, 2025, 12(01): 54-57.
[15] 黄华, 梁志坚. 恶性肿瘤相关出血性卒中的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 611-615.
阅读次数
全文


摘要