[1] |
Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey [J]. Lancet, 2012, 379(9818): 815-822.
|
[2] |
Chen TK, Knicely DH, Grams ME, et al. Chronic kidney disease diagnosis and management: a review [J]. JAMA, 2019, 322(13): 1294-1304.
|
[3] |
Liu D, Lv LL. New understanding on the role of proteinuria in progression of chronic kidney disease [J]. Adv Exp Med Biol, 2019, 1165: 487-500.
|
[4] |
Martínez-Klimova E, Aparicio-Trejo OE, Tapia E, et al. Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments [J]. Biomolecules, 2019, 9(4): 141.
|
[5] |
Mack M, Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis [J]. Kidney Int, 2015, 87(2): 297-307.
|
[6] |
Zuo Y, Liu Y. New insights into the role and mechanism of Wnt/β-catenin signaling in kidney fibrosis [J]. Nephrology (Carlton), 2018, 23(Suppl 4): 38-43.
|
[7] |
Wang Y, Zhou CJ, Liu Y. Wnt signaling in kidney development and disease [J]. Prog Mol Biol Transl Sci, 2018, 153: 181-207.
|
[8] |
Hao S, He W, Li Y, et al. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis [J]. J Am Soc Nephrol, 2011, 22(9): 1642-1653.
|
[9] |
Li SS, Sun Q, Hua MR, et al. Targeting the Wnt/β-catenin signaling pathway as a potential therapeutic strategy in renal tubulointerstitial fibrosis [J]. Front Pharmacol, 2021, 12: 719880.
|
[10] |
Wu Q, Sun S, Wei L, et al. Twist1 regulates macrophage plasticity to promote renal fibrosis through galectin-3 [J]. Cell Mol Life Sci, 2022, 79(3): 137.
|
[11] |
Zhou D, Tian Y, Sun L, et al. Matrix metalloproteinase-7 is a urinary biomarker and pathogenic mediator of kidney fibrosis [J]. J Am Soc Nephrol, 2017, 28(2): 598-611.
|
[12] |
Zhou G, Li J, Zeng T, et al. The regulation effect of Wnt-Ras signaling in hypothalamic paraventricular nucleus on renal fibrosis [J]. J Am Soc Nephrol, 2020, 33(2): 289-297.
|
[13] |
He W, Dai C, Li Y, et al. Wnt/β-catenin signaling promotes renal interstitial fibrosis [J]. J Am Soc Nephrol, 2009, 20(4): 765-776.
|
[14] |
Jung YS, Park JI. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex [J]. Exp Mol Med, 2020, 52(2): 183-191.
|
[15] |
González-Sancho JM, Brennan KR, Castelo-Soccio LA, et al. Wnt proteins induce dishevelled phosphorylation via an LRP5/6-independent mechanism, irrespective of their ability to stabilize β-catenin [J]. Mol Cell Biol, 2004, 24(11): 4757-4768.
|
[16] |
Wang JC, Li YQ, Feng DY, et al. Loss of sFRP2 contributes to the neurological disorders related with morphine withdrawal via Wnt/β-catenin signaling [J]. Behav Brain Res, 2019, 359: 609-618.
|
[17] |
Garcia-Pardo J, Tanco S, Garcia-Guerrero MC, et al. Substrate specificity and structural modeling of human carboxypeptidase Z: a unique protease with a frizzled-like domain [J]. Int J Mol Sci, 2020, 21(22): 8687.
|
[18] |
Curto J, Del Valle-Pérez B, Villarroel A, et al. CK1ε and p120-catenin control Ror2 function in noncanonical Wnt signaling [J]. Mol Oncol, 2018, 12(5): 611-629.
|
[19] |
Messéant J, Ezan J, Delers P, et al. Wnt proteins contribute to neuromuscular junction formation through distinct signaling pathways [J]. Development, 2017, 144(9): 1712-1724.
|
[20] |
Bu Q, Li Z, Zhang J, et al. The crystal structure of full-length sizzled from Xenopus laevis yields insights into Wnt-antagonistic function of secreted frizzled-related proteins [J]. J Biol Chem, 2017, 292(39): 16055-16069.
|
[21] |
Quélard D, Lavergne E, Hendaoui I, et al. A cryptic frizzled module in cell surface collagen 18 inhibits Wnt/β-catenin signaling [J]. PLoS One, 2008, 3(4): e1878.
|
[22] |
Su J, Zhang A, Shi Z, et al. MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with β-catenin [J]. Int J Oncol, 2012, 40(4): 1162-1170.
|
[23] |
Shah S, Islam MN, Dakshanamurthy S, et al. The molecular basis of vitamin D receptor and β-catenin crossregulation [J]. Mol Cell, 2006, 21(6): 799-809.
|
[24] |
Federico G, Meister M, Mathow D, et al. Tubular Dickkopf-3 promotes the development of renal atrophy and fibrosis [J]. JCI Insight, 2016, 1(1): e84916.
|
[25] |
Surendran K, Schiavi S, Hruska KA. Wnt-dependent β-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis [J]. J Am Soc Nephrol, 2005, 16(8): 2373-2384.
|
[26] |
Matsuyama M, Nomori A, Nakakuni K, et al. Secreted frizzled-related protein 1 (sFRP1) regulates the progression of renal fibrosis in a mouse model of obstructive nephropathy [J]. J Biol Chem, 2014, 289(45): 31526-31533.
|
[27] |
Vatner DE, Zhang J, Zhao X, et al. Secreted frizzled protein 3 is a novel cardioprotective mechanism unique to the clinically relevant fourth window of ischemic preconditioning [J]. Am J Physiol Heart Circ Physiol, 2021, 320(2): H798-H804.
|
[28] |
Clevers H. Wnt/β-catenin signaling in development and disease [J]. Cell, 2006, 127(3): 469-480.
|
[29] |
Fang X, Hu J, Chen Y, et al. Dickkopf-3: current knowledge in kidney diseases [J]. Front Physiol, 2020, 11: 533344.
|
[30] |
He W, Kang YS, Dai C, et al. Blockade of Wnt/β-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury [J]. J Am Soc Nephrol, 2011, 22(1): 90-103.
|
[31] |
Gözel N, Duran F, Yildirim A, et al. Paricalcitol inhibits Wnt/β-catenin signaling pathway and ameliorates dermal fibrosis in bleomycin induced scleroderma model [J]. Arch Rheumatol, 2017, 33(3): 288-294.
|
[32] |
Zhou L, Li Y, Zhou D, et al. Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling [J]. J Am Soc Nephrol, 2013, 24(5): 771-785.
|
[33] |
Yuan Q, Ren Q, Li L, et al. A Klotho-derived peptide protects against kidney fibrosis by targeting TGF-β signaling [J]. Nat Commun, 2022, 13(1): 438.
|
[34] |
Wiese M, Walther N, Diederichs C, et al. The β-catenin/CBP-antagonist ICG-001 inhibits pediatric glioma tumorigenicity in a Wnt-independent manner [J]. Oncotarget, 2017, 8(16): 27300-27313.
|
[35] |
Rao P, Pang M, Qiao X, et al. Promotion of β-catenin/Foxo1 signaling ameliorates renal interstitial fibrosis [J]. Lab Invest, 2019, 99(11): 1689-1701.
|
[36] |
Xiao L, Zhou D, Tan RJ, et al. Sustained activation of Wnt/β-catenin signaling drives AKI to CKD progression [J]. J Am Soc Nephrol, 2016, 27(6): 1727-1740.
|
[37] |
Shi XY, Hou FF, Niu HX, et al. Advanced oxidation protein products promote inflammation in diabetic kidney through activation of renal nicotinamide adenine dinucleotide phosphate oxidase [J]. Endocrinology, 2008, 149(4): 1829-1839.
|
[38] |
Feng H, Hu H, Zheng P, et al. AGE receptor 1 silencing enhances advanced oxidative protein product-induced epithelial-to-mesenchymal transition of human kidney proximal tubular epithelial cells via RAGE activation [J]. Biochem Biophys Res Commun, 2020, 529(4): 1201-1208.
|
[39] |
Taub M. Salt inducible kinase signaling networks: implications for acute kidney injury and therapeutic potential [J]. Int J Mol Sci, 2019, 20(13): 3219.
|
[40] |
Hu J, Qiao J, Yu Q, et al. Role of SIK1 in the transition of acute kidney injury into chronic kidney disease [J]. J Transl Med, 2021, 19(1): 69.
|
[41] |
Guo Y, Chao L, Chao J. Kallistatin attenuates endothelial senescence by modulating Let-7g-mediated miR-34a-SIRT1-eNOS pathway [J]. J Cell Mol Med, 2018, 22(9): 4387-4398.
|
[42] |
Wang T, Shi F, Wang J, et al. Kallistatin suppresses cell proliferation and invasion and promotes apoptosis in cervical cancer through blocking NF-κB signaling [J]. Oncol Res, 2017, 25(5): 809-817.
|
[43] |
Yiu WH, Wong DW, Wu HJ, et al. Kallistatin protects against diabetic nephropathy in db/db mice by suppressing AGE-RAGE-induced oxidative stress [J]. Kidney Int, 2016, 89(2): 386-398.
|
[44] |
Yiu WH, Li Y, Lok SWY, et al. Protective role of kallistatin in renal fibrosis via modulation of Wnt/β-catenin signaling [J]. Clin Sci (Lond), 2021, 135(3): 429-446.
|
[45] |
Zhu S, Hou S, Lu Y, et al. USP36-mediated deubiquitination of DOCK4 contributes to the diabetic renal tubular epithelial cell injury via Wnt/β-catenin signaling pathway [J]. Front Cell Dev Biol, 2021, 9: 638477.
|