[1] |
Ronco C, Bellomo R, Kellum JA. Acute kidney injury [J]. Lancet, 2019, 394(10212): 1949-1964.
|
[2] |
Vinas JL, Porter CJ, Douvris A, et al. Sex diversity in proximal tubule and endothelial gene expression in mice with ischemic acute kidney injury [J]. Clin Sci, 2020, 134(14): 1887-1909.
|
[3] |
Chen CB, Liu LS, Zhou J, et al. Up-regulation of HMGB1 exacerbates renal ischemia-reperfusion injury by stimulating inflammatory and immune responses through the TLR4 signaling pathway in mice [J]. Cell Physiol Biochem, 2017, 41(6): 2447-2460.
|
[4] |
Smith SF, Hosgood SA, Nicholson ML. Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells [J]. Kidney Int, 2019, 95(1): 50-56.
|
[5] |
Jang HR, Rabb H. Immune cells in experimental acute kidney injury [J]. Nat Rev Nephrol, 2015, 11(2): 88-101.
|
[6] |
Wolfs TG, Buurman WA, van Schadewijk A, et al. In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells: IFN-gamma and TNF-alpha mediated up-regulation during inflammation [J]. J Immunol, 2002, 168(3): 1286-1293.
|
[7] |
Rysz J, Hannam S, Banach M, et al. The role of Toll-like receptors in renal diseases [J]. Nat Rev Nephrol, 2010, 6(4): 224-235.
|
[8] |
覃志成,闫燕,李荣山. 外源性硫化氢在大鼠肾脏缺血再灌注损伤中的保护作用[J]. 中华肾脏病杂志,2012, 28(8): 639-642.
|
[9] |
覃志成,石媛媛,闫燕,等. 硫化氢通过抑制NOD样受体途径减轻肾脏缺血再灌注损伤[J]. 中华肾脏病杂志,2014, 30(8): 604-608.
|
[10] |
杨晶,张晓坚,胡长平. 吴茱萸次碱通过抑制TLR4/NF-κB信号通路保护大鼠心肌缺血/再灌注损伤[J]. 中国药理学通报,2017, 33(12): 1707-1712.
|
[11] |
杨茹茜,徐倩,皇甫志敏,等. 黄芪甲苷对肾缺血再灌注后纤维化小鼠Toll样受体通路的作用研究[J]. 中国中药杂志,2018, 43(18): 3729-3739.
|
[12] |
范军朝,宋俊杰,陈勇. 七氟醚预处理对大鼠肺缺血-再灌注损伤的保护作用及对TLR4/MyD88/NF-κB信号通路的影响[J]. 器官移植,2021, 12(4): 436-444.
|
[13] |
张喜洋,陈婵,牧杰,等. TLR3基因敲除通过改善线粒体生物学特性减轻肺缺血-再灌注肺损伤[J]. 临床麻醉学杂志,2020, 36(1): 68-71.
|
[14] |
See EJ, Jayasinghe K, Glassford N, et al. Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure [J]. Kidney Int, 2019, 95(1): 160-172.
|
[15] |
Shiva N, Sharma N, Kulkarni YA, et al. Renal ischemia/reperfusion injury: an insight on in vitro and in vivo models [J]. Life Sci, 2020, 256: 117860.
|
[16] |
龙泓伶,徐昉,廖晓辉. p53在急性肾损伤中的研究进展[J]. 中国急救医学,2019, 39(10): 1007-1010.
|
[17] |
Hosszu A, Fekete A, Szabo AJ. Sex differences in renal ischemia-reperfusion injury [J]. Am J Physiol Renal Physiol, 2020, 319(2): F149-F154.
|
[18] |
Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, et al. Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair [J]. J Clin Med, 2020, 9(1): 253.
|
[19] |
Rusai K, Sollinger D, Baumann M, et al. Toll-like receptors 2 and 4 in renal ischemia/reperfusion injury [J]. Pediatr Nephrol, 2010, 25(5): 853-860.
|
[20] |
Alessandra T, Jesper K, Angelique MLS, et al. Metabolic flexibility and innate immunity in renal ischemia reperfusion injury: the fine balance between adaptive repair and tissue degeneration [J]. Front Immunol, 2020, 11: 1346.
|
[21] |
Ng PC, Hendry-Hofer TB, Witeof AE, et al. Hydrogen sulfide toxicity: mechanism of action, clinical presentation, and countermeasure development [J]. J Med Toxicol, 2019, 15(4): 287-294.
|
[22] |
Roorda M, Miljkovic JL, van Goor H, et al. Spatiotemporal regulation of hydrogen sulfide signaling in the kidney [J]. Redox Biol, 2021, 43: 101961.
|
[23] |
Pieretti JC, Junho C, Carneiro-Ramos MS, et al. H2S- and NO-releasing gasotransmitter platform: a crosstalk signaling pathway in the treatment of acute kidney injury [J]. Pharmacol Res, 2020, 161: 105121.
|
[24] |
Tan Z, Shi Y, Yan Y, et al. Impact of endogenous hydrogen sulfide on Toll-like receptor pathway in renal ischemia/reperfusion injury in rats [J]. Ren Fail, 2015, 37(4): 727-733.
|