切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2022, Vol. 11 ›› Issue (02) : 61 -66. doi: 10.3877/cma.j.issn.2095-3216.2022.02.001

论著

外源性硫化氢抑制TLR2和TLR4表达并减轻大鼠肾脏缺血再灌注损伤
张文文1, 闫琰1, 董毅玲1, 覃志成1,()   
  1. 1. 030012 太原,山西医科大学第五临床医学院肾内科、山西省肾脏病重点实验室
  • 收稿日期:2021-09-15 出版日期:2022-04-28
  • 通信作者: 覃志成
  • 基金资助:
    山西省"136"兴医工程专项基金(SZ2019011)

Exogenous hydrogen sulfide inhibited TLR2 and TLR4 expression and alleviated the renal ischemia-reperfusion injury in rats

Wenwen Zhang1, Yan Yan1, Yiling Dong1, Zhicheng Tan1,()   

  1. 1. Department of Nephrology, Fifth Clinical Medical College of Shanxi Medical University, Shanxi Provincial Key Laboratory of Nephrology, Taiyuan 030012, Shanxi Province, China
  • Received:2021-09-15 Published:2022-04-28
  • Corresponding author: Zhicheng Tan
引用本文:

张文文, 闫琰, 董毅玲, 覃志成. 外源性硫化氢抑制TLR2和TLR4表达并减轻大鼠肾脏缺血再灌注损伤[J/OL]. 中华肾病研究电子杂志, 2022, 11(02): 61-66.

Wenwen Zhang, Yan Yan, Yiling Dong, Zhicheng Tan. Exogenous hydrogen sulfide inhibited TLR2 and TLR4 expression and alleviated the renal ischemia-reperfusion injury in rats[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2022, 11(02): 61-66.

目的

观察外源性硫化氢(H2S)供体硫氢化钠(NaHS)能否抑制Toll样受体2(TLR2)和Toll样受体4(TLR4)表达、减轻大鼠肾脏缺血再灌注损伤(IRI)。

方法

24只6~8周龄雄性SD大鼠随机分为3组:假手术(Sham)组、肾脏缺血再灌注(I/R)组、NaHS+I/R组。采用右肾切除联合左肾动脉夹闭45 min后再灌注24 h的方法诱导肾IRI。夹闭左肾动脉前,NaHS+I/R组给予NaHS(300 nmol/min)连续输注10 min,Sham组和I/R组则给予等体积生理盐水。分别留取各组腹主动脉血及肾组织标本。Western印迹法检测肾组织TLR2、TLR4蛋白的表达;免疫组织化学法检测肾组织白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)的表达;比色法检测血尿素氮(BUN)、血肌酐(Scr)。HE染色观察肾脏组织学改变;TUNEL法检测肾组织细胞凋亡。

结果

与Sham组比较,I/R组的TLR2、TLR4、IL-6、TNF-α表达均增加(P<0.05),BUN、Scr亦明显升高(P<0.05),肾小管上皮损伤评分较高(P<0.05),肾组织凋亡细胞增加(P<0.05)。与I/R组比较,NaHS+I/R组的TLR2、TLR4、IL-6、TNF-α表达均减少(P<0.05),BUN、Scr亦明显下降(P<0.05),肾小管上皮损伤评分较低(P<0.05),肾组织凋亡细胞减少(P<0.05)。

结论

外源性H2S可以抑制TLR2、TLR4途径,减少炎症因子释放及细胞凋亡,减轻大鼠肾脏IRI。

Objective

To observe whether exogenous hydrogen sulfide (H2S) donor sodium hydrosulfide (NaHS) can alleviate renal ischemia-reperfusion injury (IRI) in rats by inhibiting the expression of Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4).

Methods

Twenty-four male SD rats aged 6-8 weeks were randomly divided into 3 groups: sham group (renal sham operation), I/R group (renal ischemia-reperfusion), and NaHS+ I/R group. Renal IRI was induced by right nephrectomy combined with left renal artery clipping for 45 minutes followed by 24 hours of reperfusion. Before the left renal artery clipping, the NaHS+ I/R group was given a continuous infusion of NaHS (300 nmol/min) for 10 minutes, while the sham group and I/R group were given an equal volume of normal saline. Abdominal aortic blood and kidney tissue samples were collected from each group. The expression of TLR2 and TLR4 protein in renal tissue was detected by western blotting. The expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in renal tissue was detected by immunohistochemistry. Blood urea nitrogen (BUN) and serum creatinine (Scr) were detected by colorimetry. HE staining was used to observe renal histological changes, and TUNEL method to detect renal tissue apoptosis.

Results

Compared with the sham group, the I/R group showed more expression of TLR2, TLR4, IL-6 and TNF-α (P<0.05), higher levels of BUN and Scr (P<0.05), higher scores of the renal tubular injury (P<0.05), and more apoptotic cells in the renal tissue (P<0.05). Compared with the I/R group, the NaHS+ I/R group showed less expression of TLR2, TLR4, IL-6 and TNF-α (P<0.05), lower levels of BUN and Scr (P<0.05), lower scores of the renal tubular injury (P<0.05), and less apoptotic cells in the renal tissue (P<0.05).

Conclusion

Exogenous H2S inhibited the expression of TLR2 and TLR4, reduced the release of inflammatory factors and apoptosis, and alleviated the renal IRI in rats.

图1 各组大鼠肾组织Toll样受体2和Toll样受体4蛋白检测结果及半定量分析注:A:TLR2和TLR4蛋白Western印迹检测结果;B:各组大鼠肾组织TLR2蛋白表达分析;C:各组大鼠肾组织TLR4蛋白表达分析;TLR2:Toll样受体2;TLR4:Toll样受体4;与Sham组比较,aP<0.01;与I/R组比较,bP<0.01
图2 各组大鼠肾组织IL-6表达注:A:Sham组(免疫组化×200);B:I/R组(免疫组化×200);C:NaHS+I/R组(免疫组化×200);D:各组大鼠肾组织IL-6相对表达水平分析;IL-6:白细胞介素6;与Sham组比较,aP<0.05;与I/R组比较,bP<0.05
图3 各组大鼠肾组织TNF-α表达注:A:Sham组(免疫组化×200);B:I/R组(免疫组化×200);C:NaHS+I/R组(免疫组化×200);D:各组大鼠肾组织TNF-α相对表达水平分析;TNF-α:肿瘤坏死因子-α;与Sham组比较,aP<0.05;与I/R组比较,bP<0.05
图4 各组大鼠血尿素氮和血肌酐水平注:A:各组大鼠BUN水平分析;B:各组大鼠Scr水平分析;BUN:血尿素氮;Scr:血肌酐;与Sham组比较,aP<0.05;与I/R组比较,bP<0.05
表1 各组大鼠BUN、Scr水平比较(n=6,±s)
图5 各组大鼠肾组织病理学改变注:A:Sham组(HE×400);B:I/R组(HE×400);C:NaHS+I/R组(HE×400);D:各组大鼠肾组织肾小管损伤评分分析;与Sham组比较,aP<0.05;与I/R组比较,bP<0.05
图6 各组大鼠肾组织细胞凋亡比较注:A:Sham组(TUNEL×200);B:I/R组(TUNEL×200);C:NaHS+I/R组(TUNEL×200);D:各组大鼠肾组织凋亡细胞阳性率分析;照片箭头指示凋亡细胞;与Sham组比较,aP<0.05;与I/R组比较,bP<0.05
[1]
Ronco C, Bellomo R, Kellum JA. Acute kidney injury [J]. Lancet, 2019, 394(10212): 1949-1964.
[2]
Vinas JL, Porter CJ, Douvris A, et al. Sex diversity in proximal tubule and endothelial gene expression in mice with ischemic acute kidney injury [J]. Clin Sci, 2020, 134(14): 1887-1909.
[3]
Chen CB, Liu LS, Zhou J, et al. Up-regulation of HMGB1 exacerbates renal ischemia-reperfusion injury by stimulating inflammatory and immune responses through the TLR4 signaling pathway in mice [J]. Cell Physiol Biochem, 2017, 41(6): 2447-2460.
[4]
Smith SF, Hosgood SA, Nicholson ML. Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells [J]. Kidney Int, 2019, 95(1): 50-56.
[5]
Jang HR, Rabb H. Immune cells in experimental acute kidney injury [J]. Nat Rev Nephrol, 2015, 11(2): 88-101.
[6]
Wolfs TG, Buurman WA, van Schadewijk A, et al. In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells: IFN-gamma and TNF-alpha mediated up-regulation during inflammation [J]. J Immunol, 2002, 168(3): 1286-1293.
[7]
Rysz J, Hannam S, Banach M, et al. The role of Toll-like receptors in renal diseases [J]. Nat Rev Nephrol, 2010, 6(4): 224-235.
[8]
覃志成,闫燕,李荣山. 外源性硫化氢在大鼠肾脏缺血再灌注损伤中的保护作用[J]. 中华肾脏病杂志2012, 28(8): 639-642.
[9]
覃志成,石媛媛,闫燕,等. 硫化氢通过抑制NOD样受体途径减轻肾脏缺血再灌注损伤[J]. 中华肾脏病杂志2014, 30(8): 604-608.
[10]
杨晶,张晓坚,胡长平. 吴茱萸次碱通过抑制TLR4/NF-κB信号通路保护大鼠心肌缺血/再灌注损伤[J]. 中国药理学通报2017, 33(12): 1707-1712.
[11]
杨茹茜,徐倩,皇甫志敏,等. 黄芪甲苷对肾缺血再灌注后纤维化小鼠Toll样受体通路的作用研究[J]. 中国中药杂志2018, 43(18): 3729-3739.
[12]
范军朝,宋俊杰,陈勇. 七氟醚预处理对大鼠肺缺血-再灌注损伤的保护作用及对TLR4/MyD88/NF-κB信号通路的影响[J]. 器官移植2021, 12(4): 436-444.
[13]
张喜洋,陈婵,牧杰,等. TLR3基因敲除通过改善线粒体生物学特性减轻肺缺血-再灌注肺损伤[J]. 临床麻醉学杂志2020, 36(1): 68-71.
[14]
See EJ, Jayasinghe K, Glassford N, et al. Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure [J]. Kidney Int, 2019, 95(1): 160-172.
[15]
Shiva N, Sharma N, Kulkarni YA, et al. Renal ischemia/reperfusion injury: an insight on in vitro and in vivo models [J]. Life Sci, 2020, 256: 117860.
[16]
龙泓伶,徐昉,廖晓辉. p53在急性肾损伤中的研究进展[J]. 中国急救医学2019, 39(10): 1007-1010.
[17]
Hosszu A, Fekete A, Szabo AJ. Sex differences in renal ischemia-reperfusion injury [J]. Am J Physiol Renal Physiol, 2020, 319(2): F149-F154.
[18]
Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, et al. Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair [J]. J Clin Med, 2020, 9(1): 253.
[19]
Rusai K, Sollinger D, Baumann M, et al. Toll-like receptors 2 and 4 in renal ischemia/reperfusion injury [J]. Pediatr Nephrol, 2010, 25(5): 853-860.
[20]
Alessandra T, Jesper K, Angelique MLS, et al. Metabolic flexibility and innate immunity in renal ischemia reperfusion injury: the fine balance between adaptive repair and tissue degeneration [J]. Front Immunol, 2020, 11: 1346.
[21]
Ng PC, Hendry-Hofer TB, Witeof AE, et al. Hydrogen sulfide toxicity: mechanism of action, clinical presentation, and countermeasure development [J]. J Med Toxicol, 2019, 15(4): 287-294.
[22]
Roorda M, Miljkovic JL, van Goor H, et al. Spatiotemporal regulation of hydrogen sulfide signaling in the kidney [J]. Redox Biol, 2021, 43: 101961.
[23]
Pieretti JC, Junho C, Carneiro-Ramos MS, et al. H2S- and NO-releasing gasotransmitter platform: a crosstalk signaling pathway in the treatment of acute kidney injury [J]. Pharmacol Res, 2020, 161: 105121.
[24]
Tan Z, Shi Y, Yan Y, et al. Impact of endogenous hydrogen sulfide on Toll-like receptor pathway in renal ischemia/reperfusion injury in rats [J]. Ren Fail, 2015, 37(4): 727-733.
[1] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[2] 杨柳, 陈佳, 孙雅娟, 陈娇, 谭明超, 龚明福. 抗中性粒细胞胞浆抗体相关性血管炎的胸部CT 及临床特征分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 744-749.
[3] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[4] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[5] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[6] 崔文鹏. 腹膜透析在老年终末期肾脏疾病患者中的应用[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 300-300.
[7] 王小龙, 吴杰, 冯哲, 文浩, 段姝伟, 梁爽, 蔡广研. 心内科病房急性肾损伤且行肾脏替代治疗患者短期预后不良的危险因素分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 241-248.
[8] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[9] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[10] 孙婧婷, 李娜, 罗明辉, 高瑶瑶, 白义行, 朱国贞. 短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 181-187.
[11] 刘俊, 陈客宏. 终末期肾脏病患者运动干预的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 219-225.
[12] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[13] 李润东, 豆小文, 张秀明. 失笑散联合胃复春治疗慢性萎缩性胃炎的疗效及对血清免疫受体和炎症因子水平的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 470-473.
[14] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
[15] 孙双权, 孙玮玮, 王勇, 方道成, 温晖. 肾脏混合性上皮和间质肿瘤一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 512-515.
阅读次数
全文


摘要