切换至 "中华医学电子期刊资源库"

中华肾病研究电子杂志 ›› 2023, Vol. 12 ›› Issue (03) : 156 -162. doi: 10.3877/cma.j.issn.2095-3216.2023.03.007

论著

膜性肾病中M2巨噬细胞相关基因的生物信息学分析
吴琼, 朱国贞()   
  1. 030001 太原,山西医科大学第二医院肾内科
  • 收稿日期:2022-09-06 出版日期:2023-06-28
  • 通信作者: 朱国贞
  • 基金资助:
    山西省自然科学研究面上项目(202103021224420)

Bioinformatic analysis of genes associated with M2 macrophages in membranous nephropathy

Qiong Wu, Guozhen Zhu()   

  1. Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
  • Received:2022-09-06 Published:2023-06-28
  • Corresponding author: Guozhen Zhu
引用本文:

吴琼, 朱国贞. 膜性肾病中M2巨噬细胞相关基因的生物信息学分析[J/OL]. 中华肾病研究电子杂志, 2023, 12(03): 156-162.

Qiong Wu, Guozhen Zhu. Bioinformatic analysis of genes associated with M2 macrophages in membranous nephropathy[J/OL]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2023, 12(03): 156-162.

目的

通过生物信息学分析探讨膜性肾病(MN)中有关M2巨噬细胞的免疫分子机制。

方法

从基因表达集(GEO)数据库下载微阵列数据集(GSE104948和GSE108109,其中GSE108109作为验证数据集),使用Timer数据库进行免疫浸润分析。以M2巨噬细胞作为表型进行加权基因共表达网络分析,筛选M2巨噬细胞相关核心基因。从差异表达基因和核心基因的交集确定潜在关键基因。利用数据集GSE108109验证潜在关键基因的表达水平,以接受者操作特征(ROC)曲线分析评估其诊断价值。

结果

M2巨噬细胞在MN组和正常对照组之间显著不同。确定了6个M2巨噬细胞相关的关键基因:PPARGC1A、ESRRG、KCNJ16、HLF、HGD和SULT1C2。ROC曲线分析显示,以上6个基因的ROC曲线下面积值均大于0.85。

结论

本研究发现了有关MN中M2巨噬细胞的6个基因,尚需进一步研究验证其在MN中的作用。

Objective

This study aimed to explore the immune molecular mechanisms related to M2 macrophages in membranous nephropathy (MN) through bioinformatics analysis.

Methods

Microarray datasets (GSE104948 and GSE108109, with GSE108109 as the validation dataset) were downloaded from the Gene Expression Omnibus (GEO) database. And immune infiltration analysis was performed using the Timer database. M2 macrophages were used as a phenotype for weighted gene co-expression network analysis in order to screen M2 macrophage-related hub genes. Differentially expressed genes and the hub genes were then intersected to identify potential key genes. Meanwhile, the expression levels of the potential key genes were validated in dataset GSE108109, and their diagnostic value was assessed by the receiver operating characteristics (ROC) curve analysis.

Results

M2 macrophages were significantly different between the MN patients and normal controls. Six M2 macrophages-related key genes were identified including PPARGC1A, ESRRG, KCNJ16, HLF, HGD, and SULT1C2. The ROC curve analysis showed that values of the area under the ROC curve of the key 6 genes were greater than 0.85.

Conclusions

This study identified six key genes related to M2 macrophages in MN, and further research is needed to verify their roles in MN.

图1 差异表达基因的火山图和热图注:A:差异表达基因的火山图,横坐标log2(差异表达倍数)为差异表达倍数以2为底的对数值,纵坐标-log10(P值)为显著性水平以10为底的负对数值;B:差异表达基因的热图
图2 膜性肾病与正常对照组免疫细胞浸润对比注:A:膜性肾病组和对照组中免疫细胞在不同样本中的相对百分比,横坐标代表不同样本,纵坐标代表免疫细胞在样本中的表达量;B:膜性肾病组和正常对照组之间免疫细胞浸润的小提琴图,横坐标代表不同免疫细胞,纵坐标代表免疫细胞比例
图3 加权基因共表达网络分析注:A:基因共表达网络分层聚类树与共表达模块;B:M2巨噬细胞相关的模块特征,每个模块中上面的数值为模块与M2巨噬细胞之间的相关性值,下面括号中的数值为P
表1 38个核心基因
表2 核心基因的GO富集分析及KEEG通路分析结果
图4 潜在关键基因的确定及表达注:A:差异表达基因和核心基因的韦恩图;B:9个潜在关键基因在GSE104948中的表达情况,横坐标代表不同的基因,纵坐标代表基因相对表达量
图5 9个潜在关键基因在GSE108109中的表达注:横坐标代表不同的基因,纵坐标代表基因相对表达量
图6 6个关键基因的ROC曲线
表3 关键基因的基因集富集分析结果
[1]
Stahl RA, Reinhard L, Hoxha E. Characterization of autoantibodies in primary membranous nephropathy and their clinical significance [J]. Expert Rev Clin Immunol, 2019, 15(2): 165-175.
[2]
Liu Q, Liu J, Lin B, et al. Novel biomarkers in membranous nephropathy [J]. Front Immunol, 2022, 13: 845767.
[3]
Hu W, Li G, Lin J, et al. M2 macrophage subpopulations in glomeruli are associated with the deposition of IgG subclasses and complements in primary membranous nephropathy [J]. Front Med (Lausanne), 2021, 8: 657232.
[4]
Clough E, Barrett T. The gene expression omnibus database [J]. Methods Mol Biol, 2016, 1418: 93-110.
[5]
Leek JT, Johnson WE, Parker HS, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments [J]. Bioinformatics, 2012, 28(6): 882-883.
[6]
Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies [J]. Nucleic Acids Res, 2015, 43(7): e47.
[7]
Li T, Fu J, Zeng Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells [J]. Nucleic Acids Res, 2020, 48(W1): W509-W514.
[8]
Pei G, Chen L, Zhang W. WGCNA application to proteomic and metabolomic data analysis [J]. Methods Enzymol, 2017, 585: 135-158.
[9]
Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets [J]. Nat Commun, 2019, 10(1): 1523.
[10]
Couser WG. Primary membranous nephropathy [J]. Clin J Am Soc Nephrol, 2017, 12(6): 983-997.
[11]
Di Benedetto P, Ruscitti P, Vadasz Z, et al. Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases [J]. Autoimmun Rev, 2019, 18(10): 102369.
[12]
Alikhan MA, Ricardo SD. Mononuclear phagocyte system in kidney disease and repair [J]. Nephrology (Carlton), 2013, 18(2): 81-91.
[13]
Hobson-Gutierrez SA, Carmona-Fontaine C. The metabolic axis of macrophage and immune cell polarization [J]. Dis Model Mech, 201811(8): dmm034462.
[14]
Mills EL, O′Neill LA. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal [J]. Eur J Immunol, 2016, 46(1): 13-21.
[15]
靳鑫,倪田根,王宁,等. PGC-1α通过线粒体介导巨噬细胞极化状态的机制研究[J]. 第三军医大学学报2019, 41(1): 56-62.
[16]
Tran M, Parikh SM. Mitochondrial biogenesis in the acutely injured kidney [J]. Nephron Clin Pract, 2014, 127(1-4): 42-45.
[17]
Noordmans GA, Huang Y, Savage H, et al. Genetic analysis of intracapillary glomerular lipoprotein deposits in aging mice [J]. PLoS One, 2014, 9(10): e111308.
[18]
刘浩,杨慧,宋宁,等. PGC-1α和ERRγ在子宫内膜癌组织中的表达及临床意义[J]. 现代肿瘤医学2017, 25(13): 2108-2112.
[19]
孟桂林,孟欣欣,谷瑞民,等. 高钾饮食调节血压的肾脏机制[J]. 生理学报2022, 74(1): 110-116.
[20]
Gachon F, Olela FF, Schaad O, et al. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification [J]. Cell Metab, 2006, 4(1): 25-36.
[21]
杨利,黄慧,杨玉,等. 尿黑酸尿症一家系基因诊断及分析[J]. 中华实用儿科临床杂志2015, 30(8): 608-610.
[1] 张原, 李小龙, 王亚鹏. 胰腺癌中ANGPTL2蛋白与免疫抑制细胞浸润的关系及临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2023, 17(02): 145-148.
[2] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[3] 朱兴墅, 郑师尧, 王庆惠, 陈力, 刘旺武, 纪辉涛, 王瑜, 赵虎, 方永超. 蛋白磷酸酶-1催化亚基β在结直肠癌诊断、预后及免疫浸润中的生物信息学分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 321-330.
[4] 张杰, 田广磊, 陈雄. 基于生物信息学分析探讨肝癌BRD4与预后关系及其ceRNA调控网络构建[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 568-576.
[5] 施麟宵, 洪兰兰, 阳柳, 芶碧珍, 刘畅, 吴欣. 钠-葡萄糖协同转运蛋白2 抑制剂治疗原发性膜性肾病的疗效及其对Th1/Th2 的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 261-267.
[6] 张勤灵, 王盼飞, 赵倩文. 尿β2-微球蛋白在原发性膜性肾病预后评估中的作用[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 195-200.
[7] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[8] 王琳娜, 郭存霞, 乔东鸽, 赵旭, 阎磊, 邵凤民, 陈香美. 无高血压和糖尿病的特发性膜性肾病患者肾内动脉病变特点及其预后影响分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(01): 39-45.
[9] 桑田, 赵磊, 佟琰, 欧阳清, 陈香美. 急性肾损伤的内质网应激相关基因和通路的生物信息学分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(01): 26-33.
[10] 代叶梅, 苏晓乐, 王利华. 膜性肾病靶抗原的研究进展[J/OL]. 中华肾病研究电子杂志, 2023, 12(05): 282-286.
[11] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J/OL]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[12] 王素霞. 非典型膜性肾病的病理表现和鉴别诊断思路[J/OL]. 中华肾病研究电子杂志, 2022, 11(06): 360-360.
[13] 贾红艳, 王丹, 张冉冉, 马茜, 焦永红. 基于全外显子组测序探寻Möbius综合征发病机制的遗传学研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 146-154.
[14] 许航, 崔宇韬, 任广凯, 刘贺, 王雁冰, 彭传刚, 吴丹凯. 骨质疏松症关键基因的筛选及生物信息学分析[J/OL]. 中华老年骨科与康复电子杂志, 2023, 09(01): 18-22.
[15] 华杨, 孙劲禹, 程晨, 邢子琳, 盛燕辉, 孔祥清, 孙伟. 肥厚型心肌病的关键基因:一项基于加权基因共表达网络的分析[J/OL]. 中华心脏与心律电子杂志, 2023, 11(01): 32-38.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?